Home
Class 12
MATHS
Let f(x) be the fourth degree polynomial...

Let `f(x)` be the fourth degree polynomial such that `f^(prime)(0)-6,f(0)=2a n d(lim)_(xvec1)(f(x))/((x-1)^2)=1` The value of `f(2)` is `3` b. 1 c. `0` d.`2`

A

1

B

0

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C

Since `underset(xrarr1)(lim)(f(x))/((x-1)^(2))=1,f(1)=0`
`therefore" "underset(xrarr1)(lim)(f(x))/((x-1)^(2))=underset(xrarr1)(lim)(f'(x))/(2(x-1))=1`
`rArr" "f'(1)=0`
`therefore" "underset(xrarr1)(lim)(f''(x))/(2)=1rArrf''(1)=2`
Since x = 1 is root of f(x) = 0 and `f'(x) = 0`
`f(x)=(x-1)^(2)(ax^(2)+bx+2)" "(because f(0)=2)`
`rArr" "f'(x)=2(x-1)(ax^(2)+bx+2)+(2ax+b)(x-1)^(2)`
`because" "f'(0)=-6rArr b=-2`
Using f''(1)= 2, we get `a+b=-1 rArr a=1`
`rArr" "f(x)=(x-1)^(2)(x^(2)-2x+2)`
`rArr" "f(x)=(x-1)^(4)+(x-1)^(2)`
`rArr" "f(2)=1+1=2`
`"Also, "f'(x)=4(x-1)^(3)+2(x-1)`
`rArr" "f'(2)=4+2=6`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|59 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(2)=2a n df^(prime)(2)=1, then find (lim)_(xvec2)(xf(2)-2f(x))/(x-2)

Let ("lim")_(xvec1)(x^a-a x+a-1)/((x-1)^2)=f(a)dot Then the value of f(4) is _________

Let f(x) be a function such that ("lim")_(xvec0)(f(x))/x=1 and ("lim")_(xvec0)(x(1+acosx)-bsinx)/((f(x))^3)=1 , then b-3a is equal to

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

Let f(x) be a polynomial of degree 3 such that f(3)=1,f^(prime)(3)=-1,f^('')(3)=0,a n df^(''')(3)=12. Then the value of f^(prime)(1) is (a) 12 (b) 23 (c) -13 (d) none of these

Let f(x) be a polynomial of degree 3 such that f(3)=1,f^(prime)(3)=-1,f^(3)=0,a n df^(3)=12. Then the value of f^(prime)(1) is 12 (b) 23 (c) -13 (d) none of these

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f: RvecR be such that f(a)=1,f^(prime)(a)=2. Then (lim)_(xvec0)((f^2(a+x))/(f(a)))^(1//x) is a. e^2 b. e^4 c. e^(-4) d. 1//e

Let f(x) be a polynomial such that f(-1/2)=0, then a factor of f(x) is:? (a) 2x-1 (b) 2x+1 (c) x-1 (d) x+1

Let f:RrarrR be such that f(a)=1, f(a)=2 . Then lim_(x to 0)((f^(2)(a+x))/(f(a)))^(1//x) is