Home
Class 11
PHYSICS
A typical riverborne silt particle has a...

A typical riverborne silt particle has a radius of `20(mu)m` and a density of `2xx10^(3) kg//m^(3)`. The viscosity of water is `1.0 mPI`. Find the terminal speed with which such a particle will settle to the bottom of a motionless volume of water.

Text Solution

AI Generated Solution

The correct Answer is:
To find the terminal speed with which a silt particle settles in water, we can use the formula for terminal velocity derived from Stokes' law: \[ V_t = \frac{2}{9} \cdot \frac{r^2 \cdot g \cdot (\rho_s - \rho_w)}{\eta} \] Where: - \( V_t \) = terminal velocity (m/s) - \( r \) = radius of the particle (m) - \( g \) = acceleration due to gravity (approximately \( 9.8 \, \text{m/s}^2 \)) - \( \rho_s \) = density of the particle (kg/m³) - \( \rho_w \) = density of the fluid (kg/m³) - \( \eta \) = viscosity of the fluid (Pa·s) ### Step 1: Convert Units - Given radius \( r = 20 \, \mu m = 20 \times 10^{-6} \, m \) - Given density of the particle \( \rho_s = 2 \times 10^3 \, kg/m^3 \) - Given density of water \( \rho_w = 1000 \, kg/m^3 \) - Given viscosity \( \eta = 1.0 \, mPa \cdot s = 1.0 \times 10^{-3} \, Pa \cdot s \) ### Step 2: Substitute Values into the Formula Now, we can substitute these values into the terminal velocity formula: \[ V_t = \frac{2}{9} \cdot \frac{(20 \times 10^{-6})^2 \cdot 9.8 \cdot (2000 - 1000)}{1.0 \times 10^{-3}} \] ### Step 3: Calculate the Values 1. Calculate \( (20 \times 10^{-6})^2 \): \[ (20 \times 10^{-6})^2 = 400 \times 10^{-12} \, m^2 \] 2. Calculate the difference in density \( \rho_s - \rho_w \): \[ 2000 - 1000 = 1000 \, kg/m^3 \] 3. Substitute these values back into the equation: \[ V_t = \frac{2}{9} \cdot \frac{400 \times 10^{-12} \cdot 9.8 \cdot 1000}{1.0 \times 10^{-3}} \] 4. Simplify the fraction: \[ V_t = \frac{2}{9} \cdot \frac{400 \cdot 9.8 \cdot 1000 \times 10^{-12}}{10^{-3}} \] \[ = \frac{2}{9} \cdot (400 \cdot 9.8 \cdot 1000 \times 10^{-9}) \] \[ = \frac{2 \cdot 3920 \times 10^{-9}}{9} \] \[ = \frac{7840 \times 10^{-9}}{9} \] 5. Calculate \( \frac{7840}{9} \): \[ \approx 871.11 \times 10^{-9} \, m/s \] ### Step 4: Convert to mm/s Convert \( V_t \) from m/s to mm/s: \[ V_t \approx 0.871 \, mm/s \] ### Final Answer The terminal speed with which the silt particle will settle to the bottom of the water is approximately: \[ \text{Terminal speed} \approx 0.871 \, mm/s \]

To find the terminal speed with which a silt particle settles in water, we can use the formula for terminal velocity derived from Stokes' law: \[ V_t = \frac{2}{9} \cdot \frac{r^2 \cdot g \cdot (\rho_s - \rho_w)}{\eta} \] Where: - \( V_t \) = terminal velocity (m/s) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FLUID MECHANICS

    DC PANDEY ENGLISH|Exercise Exercise16.7|4 Videos
  • FLUID MECHANICS

    DC PANDEY ENGLISH|Exercise Exercise16.8|4 Videos
  • FLUID MECHANICS

    DC PANDEY ENGLISH|Exercise Exercise16.5|3 Videos
  • EXPERIMENTS

    DC PANDEY ENGLISH|Exercise Subjective|15 Videos
  • GENERAL PHYSICS

    DC PANDEY ENGLISH|Exercise INTEGER_TYPE|2 Videos