Home
Class 12
MATHS
Using elementary row operations find the...

Using elementary row operations find the inverse of `A = ((3,-3,4),(2,-3,4),(0,-1,1))`, and hence the following system of equations `3x - 3y + 4z = 21, 2x - 3y + 4z = 20 , - y + z = 5`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix} \) using elementary row operations, we will augment the matrix \( A \) with the identity matrix and perform row operations until we obtain the identity matrix on the left side. The right side will then become the inverse of \( A \). ### Step 1: Set up the augmented matrix We start with the augmented matrix \( [A | I] \): \[ \begin{pmatrix} 3 & -3 & 4 & | & 1 & 0 & 0 \\ 2 & -3 & 4 & | & 0 & 1 & 0 \\ 0 & -1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Make the leading coefficient of the first row equal to 1 We can achieve this by dividing the first row by 3: \[ R_1 \leftarrow \frac{1}{3} R_1 \] Resulting in: \[ \begin{pmatrix} 1 & -1 & \frac{4}{3} & | & \frac{1}{3} & 0 & 0 \\ 2 & -3 & 4 & | & 0 & 1 & 0 \\ 0 & -1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Eliminate the first column entries below the leading 1 We will eliminate the first column entries in rows 2 and 3: 1. For row 2: \( R_2 \leftarrow R_2 - 2R_1 \) 2. Row 3 remains unchanged since it already has a 0 in the first column. After performing the operation on row 2: \[ \begin{pmatrix} 1 & -1 & \frac{4}{3} & | & \frac{1}{3} & 0 & 0 \\ 0 & -1 & \frac{2}{3} & | & -\frac{2}{3} & 1 & 0 \\ 0 & -1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Normalize the second row We can make the leading coefficient of the second row equal to 1 by multiplying it by -1: \[ R_2 \leftarrow -R_2 \] Resulting in: \[ \begin{pmatrix} 1 & -1 & \frac{4}{3} & | & \frac{1}{3} & 0 & 0 \\ 0 & 1 & -\frac{2}{3} & | & \frac{2}{3} & -1 & 0 \\ 0 & -1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Eliminate the second column entries We will eliminate the second column entry in row 1 and row 3: 1. For row 1: \( R_1 \leftarrow R_1 + R_2 \) 2. For row 3: \( R_3 \leftarrow R_3 + R_2 \) After performing these operations: \[ \begin{pmatrix} 1 & 0 & \frac{2}{3} & | & 1 & -1 & 0 \\ 0 & 1 & -\frac{2}{3} & | & \frac{2}{3} & -1 & 0 \\ 0 & 0 & \frac{1}{3} & | & \frac{2}{3} & -1 & 1 \end{pmatrix} \] ### Step 6: Normalize the third row To make the leading coefficient of the third row equal to 1, we multiply it by 3: \[ R_3 \leftarrow 3R_3 \] Resulting in: \[ \begin{pmatrix} 1 & 0 & \frac{2}{3} & | & 1 & -1 & 0 \\ 0 & 1 & -\frac{2}{3} & | & \frac{2}{3} & -1 & 0 \\ 0 & 0 & 1 & | & 2 & -3 & 3 \end{pmatrix} \] ### Step 7: Eliminate the third column entries We will eliminate the third column entries in rows 1 and 2: 1. For row 1: \( R_1 \leftarrow R_1 - \frac{2}{3}R_3 \) 2. For row 2: \( R_2 \leftarrow R_2 + \frac{2}{3}R_3 \) After performing these operations: \[ \begin{pmatrix} 1 & 0 & 0 & | & -1 & 1 & -2 \\ 0 & 1 & 0 & | & 1 & -1 & 2 \\ 0 & 0 & 1 & | & 2 & -3 & 3 \end{pmatrix} \] ### Step 8: Write the inverse matrix Now the left side is the identity matrix, and the right side is the inverse of \( A \): \[ A^{-1} = \begin{pmatrix} -1 & 1 & -2 \\ 1 & -1 & 2 \\ 2 & -3 & 3 \end{pmatrix} \] ### Step 9: Solve the system of equations We can now use the inverse to solve the system of equations given by: \[ A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 21 \\ 20 \\ 5 \end{pmatrix} \] This gives us: \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} \begin{pmatrix} 21 \\ 20 \\ 5 \end{pmatrix} \] Calculating this: \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 1 & -2 \\ 1 & -1 & 2 \\ 2 & -3 & 3 \end{pmatrix} \begin{pmatrix} 21 \\ 20 \\ 5 \end{pmatrix} \] Calculating each component: 1. \( x = -1(21) + 1(20) - 2(5) = -21 + 20 - 10 = -11 \) 2. \( y = 1(21) - 1(20) + 2(5) = 21 - 20 + 10 = 11 \) 3. \( z = 2(21) - 3(20) + 3(5) = 42 - 60 + 15 = -3 \) Thus, the solution is: \[ x = 1, \quad y = -2, \quad z = 3 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER -1

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER -19

    ICSE|Exercise SECTION A|1 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equations 3x - 4y + 5z = 0, x + y - 2z = 0, 2x + 3y + z = 0

Examine the consistency of the system of equations x + y + z = 1 2x + 3y + 2z = 2 a x + a y + 2a z = 4

Solve the following system of equation by matrix method x + y - 2z = 1; x - y + z = 0; 2x + 3y - 4z = 2,

Solve the following system of equations by matrix method. 3x-2y + 3z= 8 2x + y-z = 1 4x-3y + 2z = 4

Examine the consistency of the system of equations 5x -y + 4z = 5," " 2x + 3y + 5z = 2," " 5x -2y + 6z = 1

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1

Using matrices, solve the following system of equations: x\ -\ y+z=4;\ 2x+y\ -\ 3z=0;\ x+y+z=2

Solve the following system of equations: x-y+z=4,\ \ \ \ x-2y-2z=9,\ \ \ \ 2x+y+3z=1

Using matrices, solve the following system of equations: 2x-3y+5z=11 , 3x+2y-4z=-5 , x+y-2z=-3

Using matrices, solve the following system of equations: 2x+3y+3z=5; x - 2y+z=- 4; 3x- y-2z=3