Home
Class 12
MATHS
If y = tan ^(-1) (sec x + tan x) , " f...

If y ` = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function \( y = \tan^{-1}(\sec x + \tan x) \) at \( x = \frac{\pi}{4} \). ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Using the chain rule for differentiation, we have: \[ \frac{dy}{dx} = \frac{1}{1 + (\sec x + \tan x)^2} \cdot \frac{d}{dx}(\sec x + \tan x) \] Now we need to differentiate \( \sec x + \tan x \): \[ \frac{d}{dx}(\sec x) = \sec x \tan x \] \[ \frac{d}{dx}(\tan x) = \sec^2 x \] Thus, \[ \frac{d}{dx}(\sec x + \tan x) = \sec x \tan x + \sec^2 x \] Now substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\sec x \tan x + \sec^2 x}{1 + (\sec x + \tan x)^2} \] ### Step 2: Evaluate \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \) At \( x = \frac{\pi}{4} \): \[ \sec\left(\frac{\pi}{4}\right) = \sqrt{2}, \quad \tan\left(\frac{\pi}{4}\right) = 1 \] So, \[ \sec\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{4}\right) = \sqrt{2} + 1 \] Now calculate \( (\sec\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{4}\right))^2 \): \[ (\sqrt{2} + 1)^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2} \] Now substituting these values into \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\sqrt{2} \cdot 1 + 2}{1 + (3 + 2\sqrt{2})} = \frac{\sqrt{2} + 2}{4 + 2\sqrt{2}} \] ### Step 3: Simplify \( \frac{dy}{dx} \) To simplify \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\sqrt{2} + 2}{4 + 2\sqrt{2}} = \frac{1}{2} \] ### Step 4: Find the second derivative \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): Since \( \frac{dy}{dx} = \frac{1}{2} \) is a constant, its derivative is: \[ \frac{d^2y}{dx^2} = 0 \] ### Step 5: Conclusion Thus, the value of \( \frac{d^2y}{dx^2} \) at \( x = \frac{\pi}{4} \) is: \[ \frac{d^2y}{dx^2} = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y =log (1+ 2t^(2)+t^(4)), x= tan^(-1) t find (d^(2)y)/(dx^(2))

If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)) .

If x = a sec^(3) theta, y =a tan ^(3) theta , then find (dy)/( dx) at theta = (pi)/(4) .

"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).

"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).

If tan(x+y)+tan(x-y)=1 , find (dy)/(dx) .

If x=asint and y=a(cost+log tan(t/2) ) , find (d^2y)/(dx^2) .