Home
Class 12
MATHS
The distance of the point (1,-1,1) from ...

The distance of the point (1,-1,1) from `vec(r)*(3 hat(i) - 4 hat(j)- 12 hat(k)) + 13 = 0 ` is

A

`(8)/(13)` units

B

`(8)/(3)` units

C

`(13)/(3)` units

D

`(13)/(8)` units

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance of the point \( P(1, -1, 1) \) from the plane given by the equation \( \vec{r} \cdot (3 \hat{i} - 4 \hat{j} - 12 \hat{k}) + 13 = 0 \), we can follow these steps: ### Step 1: Identify the normal vector and constant The equation of the plane can be rewritten in the form \( \vec{r} \cdot \vec{n} = d \), where \( \vec{n} \) is the normal vector and \( d \) is a constant. From the given equation: \[ \vec{r} \cdot (3 \hat{i} - 4 \hat{j} - 12 \hat{k}) = -13 \] We can identify: - Normal vector \( \vec{n} = 3 \hat{i} - 4 \hat{j} - 12 \hat{k} \) - Constant \( d = -13 \) ### Step 2: Write the position vector of the point The position vector \( \vec{a} \) of the point \( P(1, -1, 1) \) is: \[ \vec{a} = 1 \hat{i} - 1 \hat{j} + 1 \hat{k} \] ### Step 3: Calculate the distance from the point to the plane The distance \( D \) from a point to a plane is given by the formula: \[ D = \frac{|\vec{a} \cdot \vec{n} - d|}{|\vec{n}|} \] #### Step 3.1: Calculate \( \vec{a} \cdot \vec{n} \) Now, we compute the dot product \( \vec{a} \cdot \vec{n} \): \[ \vec{a} \cdot \vec{n} = (1 \hat{i} - 1 \hat{j} + 1 \hat{k}) \cdot (3 \hat{i} - 4 \hat{j} - 12 \hat{k}) \] Calculating the dot product: \[ = 1 \cdot 3 + (-1) \cdot (-4) + 1 \cdot (-12) \] \[ = 3 + 4 - 12 = -5 \] #### Step 3.2: Substitute into the distance formula Now substitute \( \vec{a} \cdot \vec{n} \) and \( d \) into the distance formula: \[ D = \frac{|-5 - (-13)|}{|\vec{n}|} \] \[ = \frac{|-5 + 13|}{|\vec{n}|} \] \[ = \frac{|8|}{|\vec{n}|} \] ### Step 4: Calculate the magnitude of the normal vector \( |\vec{n}| \) The magnitude of the normal vector \( \vec{n} \) is calculated as follows: \[ |\vec{n}| = \sqrt{3^2 + (-4)^2 + (-12)^2} \] \[ = \sqrt{9 + 16 + 144} = \sqrt{169} = 13 \] ### Step 5: Final calculation of distance Now substitute \( |\vec{n}| \) back into the distance formula: \[ D = \frac{8}{13} \] Thus, the distance of the point \( (1, -1, 1) \) from the plane is: \[ \boxed{\frac{8}{13}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos

Similar Questions

Explore conceptually related problems

Find the distance of the point with position vector -hat i-5 hat j-10 hat k from the point of intersection of the line vec r=(2 hat i- hat j+2 hat k)+lambda(3 hat i+4 hat j+2 hat k) with the plane vec rdot(( hat i- hat j+ hat k)=5.

Find the distance of the point 2 hat i+ hat j- hat k from the plane vec r( hat i-2 hat j+4 hat k)=9 .

Find the distance of the point 2 hat i- hat j-4 hat k from the plane vec rdot((3 hat i-4 hat j+12 hat k)-9=0.

Find the image of the point having position vector hat(i) + 3hat(j) + 4hat(k) in the plane vec(r ).(2hat(i) - hat(j) + hat(k))+ 3=0

Find the distance of the point (-1,-5,-10) from the point of intersection of line vec r=2 hat i- hat j+2 hat k+lambda(3 hat i+4 hat j+2 hat k) and the plane vec r ( hat i- hat j+ hat k)=5.

Find the distance of the point ( 1, 5, 10) from the point of intersection of the line -> r=2 hat i- hat j+2 hat k+lambda(3 hat i+4 hat j+2 hat k) and the plane -> r=( hat i- hat j+ hat k)=5 .

The distance of the point (-1, -5, -10) from the point of intersection of the line vec r=2 hat i- hat j+2 hat k+lambda(3 hat i+4 hat j+12 hat k) and the plane vec rdot(( hat i- hat j+ hat k)=5 is a. 9 b. 17 c. 13 d. none of these

If the points (1,1,p) a n d (3, 0, 1) be equidistant from the plane vecr *(3 hat i+4 hat j-12 hat k)+13=0 , then find the value of p.

Find the distance of the point (-1,\ -5,\ -10) , from the point of intersection of the line vec r=(2 hat i- hat j+2k)+lambda\ (3 hat i+4 hat j+2 hat k) and the plane vec rdot( hat i- hat j+ hat k)=5

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k vec b = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively form the vertices of a right angled triangle.