Home
Class 12
MATHS
The domain of the function f(x)=sqrt(l...

The domain of the function
`f(x)=sqrt(log_(sinx+cosx)(abs(cosx)+cosx)), 0 le x le pi` is

A

`(0,pi)`

B

`(0,pi/2)`

C

`(0,pi/3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\log_{\sin x + \cos x}(|\cos x| + \cos x)} \) for \( 0 \leq x \leq \pi \), we need to ensure that the expression inside the square root is non-negative, as the square root function is only defined for non-negative values. ### Step 1: Ensure the argument of the square root is non-negative The expression inside the square root is \( \log_{\sin x + \cos x}(|\cos x| + \cos x) \). For the square root to be defined, we need: \[ \log_{\sin x + \cos x}(|\cos x| + \cos x) \geq 0 \] ### Step 2: Analyze the logarithmic condition The logarithm \( \log_a(b) \) is non-negative when \( b \geq 1 \) if \( a > 1 \) or \( 0 < b \leq 1 \) if \( 0 < a < 1 \). Thus, we need to analyze the base \( \sin x + \cos x \) and the argument \( |\cos x| + \cos x \). ### Step 3: Determine when the base is valid 1. **Base Condition**: \( \sin x + \cos x > 1 \) - We know that \( \sin x + \cos x \) achieves its maximum value of \( \sqrt{2} \) at \( x = \frac{\pi}{4} \) and is at least \( 1 \) for \( 0 \leq x \leq \frac{\pi}{2} \). - Thus, we need to check when \( \sin x + \cos x = 1 \): \[ \sin x + \cos x = 1 \implies \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = 1 \implies x = \frac{\pi}{4} \] - Therefore, \( \sin x + \cos x > 1 \) for \( 0 \leq x < \frac{\pi}{4} \). ### Step 4: Analyze the argument of the logarithm 2. **Argument Condition**: \( |\cos x| + \cos x \geq 1 \) - For \( 0 \leq x < \frac{\pi}{2} \), \( |\cos x| = \cos x \), so: \[ \cos x + \cos x = 2\cos x \geq 1 \implies \cos x \geq \frac{1}{2} \implies x \leq \frac{\pi}{3} \] - For \( \frac{\pi}{2} < x \leq \pi \), \( |\cos x| = -\cos x \), so: \[ -\cos x + \cos x = 0 \quad \text{(not applicable)} \] ### Step 5: Combine conditions From the above analysis: - For \( 0 \leq x < \frac{\pi}{2} \), we have \( x \in [0, \frac{\pi}{3}] \) to satisfy both conditions. - For \( \frac{\pi}{2} < x \leq \pi \), the logarithm becomes undefined since \( |\cos x| + \cos x \) is not greater than or equal to 1. ### Conclusion Thus, the domain of the function \( f(x) \) is: \[ \boxed{[0, \frac{\pi}{3}]} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^2-6) is

The range of the function f(x)=1/abs(sinx)+1/abs(cosx) is

The peroid of the function f(x) =(|sinx|-|cosx|)/(|sin x + cosx|) is

The domain of definition of function f(x)=4sqrt(log_(3){(1)/(|cosx|)} ) is

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

Find dy/dx for the function: f(x)=e^x(sinx-cosx) .

Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-abs(cos^(-1)abs(cosx))) is

The period of the function f(x)=|sinx|-|cosx| , is

The function f(x)=sinx+cosx will be

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The range of values of ‘a' such that (1/2)^|x|= x² - a is satisfied f...

    Text Solution

    |

  2. Let f:R rarr R be a function defined by f(x)={abs(cosx)}, where {x} re...

    Text Solution

    |

  3. The domain of the function f(x)=sqrt(log(sinx+cosx)(abs(cosx)+cosx))...

    Text Solution

    |

  4. If f(x)=(x^(2)+2alphax+alpha^(2)-1)^(1//4) has its domain and range su...

    Text Solution

    |

  5. If f: (e,oo) rarr R & f(x)=log[log (logx)], then f is - (a)f is one-...

    Text Solution

    |

  6. The expression x^2-4px+q^2> 0 for all real x and also r^2+ p^2 < qr t...

    Text Solution

    |

  7. Let f(x)=(x^(4)-lambdax^(3)-3x^(2)+3lambdax)/(x-lambda). If range of f...

    Text Solution

    |

  8. Let a=3^(1//224)+1 and for all n ge 3, let f(n)=""^(n)C(0)a^(n-1)-""...

    Text Solution

    |

  9. The area bounded by f(x)=sin^(-1)(sinx) and g(x)=pi/2-sqrt(pi^(2)/2-...

    Text Solution

    |

  10. If f.R rarr R,f(x)=(x^(2)+bx+1)/(x^(2)+2x+b),(b gt 1) " and " f(x), 1/...

    Text Solution

    |

  11. The period of sin""(pi[x])/12+cos""(pi[x])/4+tan""(pi[x])/3, where [x]...

    Text Solution

    |

  12. If f(2x+3y ,2x-7y)=20 x ,t h e nf(x , y)e q u a l sdot 7x-3y 7x+3y...

    Text Solution

    |

  13. The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

    Text Solution

    |

  14. The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cose...

    Text Solution

    |

  15. Let f(x) be a polynominal one-one function such that f(x)f(y)+2=f(x)...

    Text Solution

    |

  16. Let f(x) be a polynominal with real coefficients such that f(x)=f'(x) ...

    Text Solution

    |

  17. Let A={1,2,3,4,5} and f:A rarr A be an into function such that f(x) ne...

    Text Solution

    |

  18. If functions f:{1,2,…,n} rarr {1995,1996} satisfying f(1)+f(2)+…+f(199...

    Text Solution

    |

  19. Find the range of y=sin^3x-6sin^2x+11sinx-6.

    Text Solution

    |

  20. Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-(x))dot Show that g(...

    Text Solution

    |