Home
Class 12
MATHS
The domain of the function f(x)=sqrt(l...

The domain of the function
`f(x)=sqrt(log_(sinx+cosx)(abs(cosx)+cosx)), 0 le x le pi` is

A

`(0,pi)`

B

`(0,pi/2)`

C

`(0,pi/3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\log_{\sin x + \cos x}(|\cos x| + \cos x)} \) for \( 0 \leq x \leq \pi \), we need to ensure that the expression inside the square root is non-negative, as the square root function is only defined for non-negative values. ### Step 1: Ensure the argument of the square root is non-negative The expression inside the square root is \( \log_{\sin x + \cos x}(|\cos x| + \cos x) \). For the square root to be defined, we need: \[ \log_{\sin x + \cos x}(|\cos x| + \cos x) \geq 0 \] ### Step 2: Analyze the logarithmic condition The logarithm \( \log_a(b) \) is non-negative when \( b \geq 1 \) if \( a > 1 \) or \( 0 < b \leq 1 \) if \( 0 < a < 1 \). Thus, we need to analyze the base \( \sin x + \cos x \) and the argument \( |\cos x| + \cos x \). ### Step 3: Determine when the base is valid 1. **Base Condition**: \( \sin x + \cos x > 1 \) - We know that \( \sin x + \cos x \) achieves its maximum value of \( \sqrt{2} \) at \( x = \frac{\pi}{4} \) and is at least \( 1 \) for \( 0 \leq x \leq \frac{\pi}{2} \). - Thus, we need to check when \( \sin x + \cos x = 1 \): \[ \sin x + \cos x = 1 \implies \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = 1 \implies x = \frac{\pi}{4} \] - Therefore, \( \sin x + \cos x > 1 \) for \( 0 \leq x < \frac{\pi}{4} \). ### Step 4: Analyze the argument of the logarithm 2. **Argument Condition**: \( |\cos x| + \cos x \geq 1 \) - For \( 0 \leq x < \frac{\pi}{2} \), \( |\cos x| = \cos x \), so: \[ \cos x + \cos x = 2\cos x \geq 1 \implies \cos x \geq \frac{1}{2} \implies x \leq \frac{\pi}{3} \] - For \( \frac{\pi}{2} < x \leq \pi \), \( |\cos x| = -\cos x \), so: \[ -\cos x + \cos x = 0 \quad \text{(not applicable)} \] ### Step 5: Combine conditions From the above analysis: - For \( 0 \leq x < \frac{\pi}{2} \), we have \( x \in [0, \frac{\pi}{3}] \) to satisfy both conditions. - For \( \frac{\pi}{2} < x \leq \pi \), the logarithm becomes undefined since \( |\cos x| + \cos x \) is not greater than or equal to 1. ### Conclusion Thus, the domain of the function \( f(x) \) is: \[ \boxed{[0, \frac{\pi}{3}]} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^2-6) is

Knowledge Check

  • The function f(x)=sinx+cosx will be

    A
    an even function
    B
    an odd function
    C
    a constant function
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The range of the function f(x)=1/abs(sinx)+1/abs(cosx) is

    The peroid of the function f(x) =(|sinx|-|cosx|)/(|sin x + cosx|) is

    The domain of definition of function f(x)=4sqrt(log_(3){(1)/(|cosx|)} ) is

    The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

    Find dy/dx for the function: f(x)=e^x(sinx-cosx) .

    Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-abs(cos^(-1)abs(cosx))) is

    The period of the function f(x)=|sinx|-|cosx| , is