Home
Class 12
MATHS
Evaluate the following : tan ( cosec...

Evaluate the following :
`tan ( cosec^(-1) sqrt(41)/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \tan \left( \csc^{-1} \left( \frac{\sqrt{41}}{4} \right) \right) \), we can follow these steps: ### Step 1: Set up the equation Let \[ x = \csc^{-1} \left( \frac{\sqrt{41}}{4} \right) \] This implies that \[ \csc x = \frac{\sqrt{41}}{4} \] ### Step 2: Find sine Since \( \csc x = \frac{1}{\sin x} \), we can write: \[ \sin x = \frac{1}{\csc x} = \frac{4}{\sqrt{41}} \] ### Step 3: Find cosine Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \), we can find \( \cos x \): \[ \cos^2 x = 1 - \sin^2 x = 1 - \left( \frac{4}{\sqrt{41}} \right)^2 \] Calculating \( \sin^2 x \): \[ \sin^2 x = \frac{16}{41} \] So, \[ \cos^2 x = 1 - \frac{16}{41} = \frac{41 - 16}{41} = \frac{25}{41} \] Thus, \[ \cos x = \sqrt{\frac{25}{41}} = \frac{5}{\sqrt{41}} \] ### Step 4: Find tangent Now we can find \( \tan x \): \[ \tan x = \frac{\sin x}{\cos x} = \frac{\frac{4}{\sqrt{41}}}{\frac{5}{\sqrt{41}}} \] This simplifies to: \[ \tan x = \frac{4}{5} \] ### Final Result Thus, \[ \tan \left( \csc^{-1} \left( \frac{\sqrt{41}}{4} \right) \right) = \frac{4}{5} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|67 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|6 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

cosec"^(-1)(-sqrt(2))

Evaluate the following cosec ( sin^(-1) (-1/sqrt3))

Evaluate the following tan^(-1) { cot (- 1/4)}

Evaluate the following expression: tan("cosec"^(-1)65/63)

Evaluate the following expression: cosec"(sec"^(-1)(sqrt(41))/4 )

Evaluate each of the following: (i) "cosec"^(-1)(-2/(sqrt(3)))+2cot^(-1)(-1) (ii) tan^(-1)(-1/(sqrt(3)))+cot^(-1)(1/(sqrt(3)))+tan^(-1)(sin(-pi/2))

For the principal values, evaluate the following: (i) cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+s e c ^(-1)(2) (ii) cot^(-1)(-sqrt(3))+tan^(-1)(1)+sec^(-1)(2/(sqrt(3)))

Evaluate each of the following: (i) cot^(-1)(1/(sqrt(3)))-"cosec"^(-1)(-2)+sec^(-1)(2/(sqrt(3))) (ii) cot^(-1){2cos(sin^(-1)((sqrt(3))/2))}

Find the principal value of the following: (i) cosec^(-1)(2) (ii) tan^(-1) (-sqrt3) (iii) cos^(-1) (-(1)/(sqrt2))

For the principal values, evaluate the following : sin^-1(-sqrt(3)/2)+ cosec^-1(-2/sqrt(3))