Home
Class 12
MATHS
Find cot^(-1) ( sqrt((1-x^(2))/(1 + x^(2...

Find `cot^(-1) ( sqrt((1-x^(2))/(1 + x^(2))))` in terms of cos

A

`cos^(-1) (x^(2))`

B

`pi/2 - 1/2 cos^(-1) ( x^(2))`

C

`pi/3 - 1/2 cos^(-1) ( x^(2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( \cot^{-1} \left( \sqrt{\frac{1 - x^2}{1 + x^2}} \right) \) in terms of cosine, we can follow these steps: ### Step 1: Set the expression equal to an angle Let \[ \theta = \cot^{-1} \left( \sqrt{\frac{1 - x^2}{1 + x^2}} \right) \] This implies that \[ \cot \theta = \sqrt{\frac{1 - x^2}{1 + x^2}} \] ### Step 2: Express cotangent in terms of sine and cosine Recall that \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \] Thus, we can write: \[ \frac{\cos \theta}{\sin \theta} = \sqrt{\frac{1 - x^2}{1 + x^2}} \] ### Step 3: Set up a right triangle Let’s consider a right triangle where: - The adjacent side (base) is \( \cos \theta \) - The opposite side (perpendicular) is \( \sin \theta \) From the cotangent definition, we can denote: - \( \cos \theta = \sqrt{1 - x^2} \) - \( \sin \theta = \sqrt{1 + x^2} \) ### Step 4: Find the hypotenuse Using the Pythagorean theorem, the hypotenuse \( h \) can be calculated as: \[ h = \sqrt{(\cos \theta)^2 + (\sin \theta)^2} = \sqrt{(\sqrt{1 - x^2})^2 + (\sqrt{1 + x^2})^2} \] This simplifies to: \[ h = \sqrt{(1 - x^2) + (1 + x^2)} = \sqrt{2} \] ### Step 5: Find cosine Now we can find \( \cos \theta \): \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{1 - x^2}}{\sqrt{2}} = \frac{1 - x^2}{\sqrt{2}} \] ### Step 6: Express \( \theta \) in terms of cosine Thus, we can express \( \theta \) as: \[ \theta = \cos^{-1} \left( \frac{\sqrt{1 - x^2}}{\sqrt{2}} \right) \] ### Final Result Therefore, we have: \[ \cot^{-1} \left( \sqrt{\frac{1 - x^2}{1 + x^2}} \right) = \cos^{-1} \left( \frac{\sqrt{1 - x^2}}{\sqrt{2}} \right) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Find tan^(-1). (x)/(sqrt(a^(2) - x^(2))) in terms of sin^(-1) , where x in (0, a)

cos^(-1)(sqrt((1+cos x)/2))

Find tan^(-1)x/(sqrt(a^2-x^2)) in terms of sin^(-1) where x in (0, a)dot

Find the domain of: y=cot^(-1)(sqrt(x^(2)-1))

Find the range of f(x)=cos^(-1)((sqrt(1+2x^2))/(1+x^2))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Evaluate: intcos{2cot^(-1)sqrt((1+x)/(1-x))} dx

Evaluate: intcos{2cot^(-1)sqrt((1+x)/(1-x))} dx

The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is

Find x if tan^(-1)(sqrt(3))+cot^(-1)x=pi/2