Home
Class 12
MATHS
Statement I y = tan^(-1) ( tan x) " and...

Statement I `y = tan^(-1) ( tan x) " and " y = cos^(-1) ( cos x) " does not have nay solution , if " x in (pi/2, (3pi)/2)`
Statement II `y = tan^(-1)( tan x) = x - pi, x in (pi/2, (3pi)/2) " and " y = cos^(-1) ( cos x) = {{:(2pi - x", " x in [pi, (3pi)/2]),(" x, " x in [pi/2,pi]):}`

A

Statement I is True, Statement II is True, Statement II is a correct explanation for statement I

B

Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I

C

Statement I is True, Statement II is False

D

Statement I is False, Statement II is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements given and determine their validity based on the properties of inverse trigonometric functions. ### Step 1: Analyze Statement I The first statement is: \[ y = \tan^{-1}(\tan x) \text{ and } y = \cos^{-1}(\cos x) \text{ does not have any solution if } x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \] 1. **Understanding \( y = \tan^{-1}(\tan x) \)**: - The function \( \tan^{-1}(\tan x) \) returns \( x \) when \( x \) is in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). - For \( x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \), \( \tan x \) is negative, and thus \( \tan^{-1}(\tan x) \) will yield a value in the range \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), specifically \( x - \pi \). 2. **Understanding \( y = \cos^{-1}(\cos x) \)**: - The function \( \cos^{-1}(\cos x) \) returns \( x \) when \( x \) is in the interval \( [0, \pi] \). - For \( x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \), \( \cos x \) is negative, and thus \( \cos^{-1}(\cos x) \) will yield \( 2\pi - x \) for \( x \in [\pi, \frac{3\pi}{2}] \) and \( x \) for \( x \in \left(\frac{\pi}{2}, \pi\right) \). ### Step 2: Determine if there is a solution - For \( x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \): - From the analysis, we have: - \( y = \tan^{-1}(\tan x) = x - \pi \) - \( y = \cos^{-1}(\cos x) = 2\pi - x \) for \( x \in [\pi, \frac{3\pi}{2}] \) and \( y = x \) for \( x \in \left(\frac{\pi}{2}, \pi\right) \). - The ranges of \( y \): - \( y = x - \pi \) gives values in \( \left(-\frac{\pi}{2} - \pi, \frac{3\pi}{2} - \pi\right) = \left(-\frac{3\pi}{2}, \frac{\pi}{2}\right) \). - \( y = 2\pi - x \) gives values in \( [\pi, \frac{3\pi}{2}] \) which translates to \( [\pi, \frac{3\pi}{2}] \). ### Step 3: Check for intersections - The ranges \( \left(-\frac{3\pi}{2}, \frac{\pi}{2}\right) \) and \( [\pi, \frac{3\pi}{2}] \) do not intersect. - Thus, there is no solution for the equations in the specified interval. ### Conclusion for Statement I - Therefore, Statement I is **true**. ### Step 4: Analyze Statement II The second statement is: \[ y = \tan^{-1}(\tan x) = x - \pi, \text{ for } x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \] and \[ y = \cos^{-1}(\cos x) = \begin{cases} 2\pi - x, & x \in [\pi, \frac{3\pi}{2}] \\ x, & x \in \left(\frac{\pi}{2}, \pi\right) \end{cases} \] - As analyzed previously, both functions yield values that do not intersect in the specified ranges. ### Conclusion for Statement II - Therefore, Statement II is also **true**. ### Final Answer Both Statement I and Statement II are true.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 6|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If x in ( - pi/2, pi/2) , then the value of tan^(-1) ((tan x)/4) + tan^(-1) ((3 sin 2x)/(5 + 3 cos 2x)) is

Knowledge Check

  • If tan x= (3)/(4) " where " pi lt x lt (3pi)/( 2), value of tan ""(x)/(2) is

    A
    `3`
    B
    ` -3`
    C
    ` (1)/(3)`
    D
    `- (1)/(3)`
  • Similar Questions

    Explore conceptually related problems

    Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

    If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

    Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

    tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

    tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

    Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

    If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and " sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = pi/6 " , then " ( 5 sin^(-1) x)/( sin^(-1) y) is