Home
Class 12
MATHS
Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)...

Let `f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2))`,then `26 f'(1)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find \( 26 f'(1) \) for the function \( f(x) = \tan^{-1}\left(\frac{x-2}{x^2 + 2x + 2}\right) \), we will first need to differentiate \( f(x) \) and then evaluate the derivative at \( x = 1 \). ### Step 1: Differentiate \( f(x) \) Using the chain rule, the derivative of \( f(x) \) can be expressed as: \[ f'(x) = \frac{d}{dx} \left( \tan^{-1}(u) \right) \] where \( u = \frac{x-2}{x^2 + 2x + 2} \). The derivative of \( \tan^{-1}(u) \) is: \[ \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] ### Step 2: Find \( u^2 \) First, we need to compute \( u^2 \): \[ u = \frac{x-2}{x^2 + 2x + 2} \] Thus, \[ u^2 = \left(\frac{x-2}{x^2 + 2x + 2}\right)^2 = \frac{(x-2)^2}{(x^2 + 2x + 2)^2} \] ### Step 3: Differentiate \( u \) Now, we need to find \( \frac{du}{dx} \). Using the quotient rule: \[ \frac{du}{dx} = \frac{(x^2 + 2x + 2)(1) - (x-2)(2x + 2)}{(x^2 + 2x + 2)^2} \] Simplifying the numerator: \[ = (x^2 + 2x + 2) - (2x^2 + 2x - 4) = -x^2 + 6 \] Thus, \[ \frac{du}{dx} = \frac{-x^2 + 6}{(x^2 + 2x + 2)^2} \] ### Step 4: Substitute into the derivative formula Now substituting \( u \) and \( \frac{du}{dx} \) into the derivative of \( f(x) \): \[ f'(x) = \frac{1}{1 + \frac{(x-2)^2}{(x^2 + 2x + 2)^2}} \cdot \frac{-x^2 + 6}{(x^2 + 2x + 2)^2} \] This simplifies to: \[ f'(x) = \frac{(x^2 + 2x + 2)^2}{(x^2 + 2x + 2)^2 + (x-2)^2} \cdot \frac{-x^2 + 6}{(x^2 + 2x + 2)^2} \] ### Step 5: Evaluate \( f'(1) \) Now, we substitute \( x = 1 \): 1. Calculate \( u \) at \( x = 1 \): \[ u = \frac{1-2}{1^2 + 2(1) + 2} = \frac{-1}{5} \implies u^2 = \frac{1}{25} \] 2. Calculate \( f'(1) \): \[ f'(1) = \frac{(1^2 + 2(1) + 2)^2}{(1^2 + 2(1) + 2)^2 + (1-2)^2} \cdot \frac{-1^2 + 6}{(1^2 + 2(1) + 2)^2} \] Calculating the terms: \[ 1^2 + 2(1) + 2 = 5 \implies 5^2 = 25 \] Thus, \[ f'(1) = \frac{25}{25 + 1} \cdot \frac{5}{25} = \frac{25}{26} \cdot \frac{5}{25} = \frac{5}{26} \] ### Step 6: Calculate \( 26 f'(1) \) Finally, we find: \[ 26 f'(1) = 26 \cdot \frac{5}{26} = 5 \] ### Final Answer \[ \boxed{5} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise 6|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

Let f(x) = sin^(-1)((2x)/(1+x^(2))) Statement I f'(2) = - 2/5 and Statement II sin^(-1)((2x)/(1 +x^(2))) = pi - 2 tan^(-1) x, AA x gt 1

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

Let f (x) = x tan ^(-1) (x^(2)) then find the f'(x)

if f(x) = tan^(1) x -(1//2) ln x. then

Let f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x)) then which of the following is correct :

Let f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x)) then which of the following is correct :

Let f(x)= cos^(-1)((x^(2))/(x^(2)+1)) . Then , the range of the f , is

Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R . The function f(x) is continuous everywhere but not differentiable at x is/ are

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?