Home
Class 12
MATHS
If (1+x+x^2+x^3)^n=sum(r=0)^(3n)br x^r ...

If `(1+x+x^2+x^3)^n=sum_(r=0)^(3n)b_r x^r and sum_(r=0)^(3n)b_r=k ,"t h e n"sum_(r=0)^(3n)r b_r` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sum_{r=0}^{3n} r b_r \) given that \( (1+x+x^2+x^3)^n = \sum_{r=0}^{3n} b_r x^r \) and \( \sum_{r=0}^{3n} b_r = k \). ### Step-by-Step Solution: 1. **Identify the Expression**: We start with the expression: \[ (1 + x + x^2 + x^3)^n \] This can be rewritten as: \[ \sum_{r=0}^{3n} b_r x^r \] 2. **Evaluate \( \sum_{r=0}^{3n} b_r \)**: To find \( \sum_{r=0}^{3n} b_r \), we substitute \( x = 1 \): \[ (1 + 1 + 1 + 1)^n = 4^n \] Therefore, we have: \[ \sum_{r=0}^{3n} b_r = k = 4^n \] 3. **Differentiate the Expression**: Next, we differentiate \( (1 + x + x^2 + x^3)^n \) with respect to \( x \): \[ \frac{d}{dx} \left( (1 + x + x^2 + x^3)^n \right) = n(1 + x + x^2 + x^3)^{n-1} \cdot (1 + 2x + 3x^2) \] The right-hand side becomes: \[ \sum_{r=0}^{3n} r b_r x^{r-1} \] 4. **Evaluate at \( x = 1 \)**: Substitute \( x = 1 \) into the differentiated equation: \[ n(1 + 1 + 1 + 1)^{n-1} \cdot (1 + 2 + 3) = n \cdot 4^{n-1} \cdot 6 \] The left-hand side becomes: \[ \sum_{r=0}^{3n} r b_r \] 5. **Combine the Results**: Thus, we have: \[ \sum_{r=0}^{3n} r b_r = n \cdot 4^{n-1} \cdot 6 \] 6. **Express in Terms of \( k \)**: Since we know \( k = 4^n \), we can substitute: \[ \sum_{r=0}^{3n} r b_r = n \cdot \frac{6k}{4} = \frac{3nk}{2} \] ### Final Result: The final result for \( \sum_{r=0}^{3n} r b_r \) is: \[ \sum_{r=0}^{3n} r b_r = \frac{3nk}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 5: Matching Type Questions|4 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Binomial Theorem Exerciese 4 : Single Integer Answer Type Questions|1 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

If a_n=sum_(r=0)^n1/(nC_r), then sum_(r=0)^n r/(nC_r) equals

If S_n=sum_(r=0)^n 1/(nC_r) and t_n=sum_(r=0)^n r/(nC_r), then t_n/S_n=

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If sum_(r=1)^n r=55 , F i nd sum_(r=1)^n r^3dot

Statement1: if n in Na n dn is not a multiple of 3 and (1+x+x^2)^n=sum_(r=0)^(2n)a_r x^r , then the value of sum_(r=0)^n(-1)^r a r^n C_r is zero Statement 2: The coefficient of x^n in the expansion of (1-x^3)^n is zero, if n=3k+1orn=3k+2.

If (1+x^(2))^(n) =sum_(r=0)^(n) a_(r)x^(r )= (1+x+x^(2)+x^(3))^(100) . If a = sum_(r=0)^(300)a_(r) , then sum_(r=0)^(300) ra_(r) is

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

If ninN,ngt4 and (1-x^(3))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(3n-2r) , then sum_(r=0)^(n)a_(r)=lambda^(n) , find lambda .