Home
Class 12
MATHS
Area of the region {(x,y) in R^(2):yge...

Area of the region
`{(x,y) in R^(2):ygesqrt(|x+3|),5ylex+9le15}` is equal to

A

`1/6`

B

`4/3`

C

`3/2`

D

`5/3`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS ENGLISH|Exercise Area of bounded Regions Exercise 7: Subjective Type Questions|1 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Area of the region {(x,y)inR^(2): y ge sqrt(|x+3|), 5ylex+9le15} is equal to

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(3) le y le x, 0 le x le 1} into two equal parts, then

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

The area of the region R={(x,y)//x^(2)le y le x} is

The area of the region {(x,y):x^(2)+y^(2)le5,||x|-|y||ge1 is

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}

The area of the region A={(x,y), 0 le y le x|x|+1 and -1 le x le 1} in sq. units, is

Area bounded by the region R-={(x,y):y^(2)lexle|y|} is

Find the area of the region {(x, y) : x^(2) + y^(2) le 4, x + y ge 2} , using the method of integration.

Using integration, find the area of the region {(x,y) : x^(2) +y^(2) le 1, x+y ge 1, x ge 0, y ge 0}