Home
Class 12
MATHS
The primitive of the function f(x)=(2x+1...

The primitive of the function `f(x)=(2x+1)|sin x|`, when `pi lt x lt 2 pi` is

A

`-(2x+1)cos x + 2 sin x +C`

B

`(2x+1)cos x - 2 sin x +C`

C

`(x^(2)+x)cos x +C`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To find the primitive (indefinite integral) of the function \( f(x) = (2x + 1)|\sin x| \) in the interval \( \pi < x < 2\pi \), we will follow these steps: ### Step 1: Analyze the function In the interval \( \pi < x < 2\pi \), the sine function is negative. Therefore, we can express the absolute value of sine as: \[ |\sin x| = -\sin x \] Thus, we can rewrite the function \( f(x) \) as: \[ f(x) = (2x + 1)(-\sin x) = - (2x + 1) \sin x \] ### Step 2: Set up the integral Now we need to find the integral of \( f(x) \): \[ \int f(x) \, dx = \int - (2x + 1) \sin x \, dx \] ### Step 3: Use integration by parts We will use integration by parts, which states: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = 2x + 1 \) (then \( du = 2 \, dx \)) - \( dv = -\sin x \, dx \) (then \( v = \cos x \)) ### Step 4: Apply integration by parts Now we apply the integration by parts formula: \[ \int - (2x + 1) \sin x \, dx = (2x + 1) \cos x - \int \cos x \cdot 2 \, dx \] Calculating the integral on the right: \[ \int \cos x \cdot 2 \, dx = 2 \sin x \] Thus, we have: \[ \int - (2x + 1) \sin x \, dx = (2x + 1) \cos x - 2 \sin x + C \] ### Final Result The primitive of the function \( f(x) \) in the interval \( \pi < x < 2\pi \) is: \[ \int f(x) \, dx = (2x + 1) \cos x - 2 \sin x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The primitive of the function f(x)= x | cos x| , when pi/2 lt x lt pi is given by

The primitive of the function f (x) =(2x+1)|cosx| , when (pi)/(2)ltxltpi is given by

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

Write the range of the function f(x)=sin[x],w h e r e(-pi)/4lt=xlt=pi/4 .

Find the intervals in which function f(x) = sin x-cos x, 0 lt x lt 2pi is (i) increasing, (ii) decreasing.

Find the intervals in which function f(x) = sin x-cos x, 0 lt x lt 2pi is (i) increasing, (ii) decreasing.

If 0 lt x lt pi /2 then

The number of points of non- differentiability of function f(x) = max { sin ^(-1)|sin x|, cos ^(-1) |sin x|} ,0 lt x lt 2 pi , is ________.

If 0 lt x lt pi/2 then