Home
Class 12
MATHS
int (dx)/((x+1)(x-2))=A log (x+1)+B log ...

`int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C`, where

A

`A+B=0`

B

`AB=0`

C

`A//B=-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{(x+1)(x-2)} \) and express it in the form \( A \log(x+1) + B \log(x-2) + C \), we will follow these steps: ### Step 1: Decompose the integrand using partial fractions We start by expressing the integrand as: \[ \frac{1}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2} \] Multiplying through by the denominator \((x+1)(x-2)\) gives: \[ 1 = A(x-2) + B(x+1) \] Expanding this, we have: \[ 1 = Ax - 2A + Bx + B = (A + B)x + (-2A + B) \] By equating coefficients, we get the system of equations: 1. \( A + B = 0 \) 2. \( -2A + B = 1 \) ### Step 2: Solve the system of equations From the first equation \( A + B = 0 \), we can express \( B \) as: \[ B = -A \] Substituting \( B \) into the second equation: \[ -2A - A = 1 \implies -3A = 1 \implies A = -\frac{1}{3} \] Now substituting back to find \( B \): \[ B = -A = \frac{1}{3} \] ### Step 3: Rewrite the integral Now we can rewrite the integral: \[ \int \frac{dx}{(x+1)(x-2)} = \int \left( \frac{-\frac{1}{3}}{x+1} + \frac{\frac{1}{3}}{x-2} \right) dx \] ### Step 4: Integrate term by term Integrating each term: \[ = -\frac{1}{3} \int \frac{dx}{x+1} + \frac{1}{3} \int \frac{dx}{x-2} \] This gives us: \[ = -\frac{1}{3} \log|x+1| + \frac{1}{3} \log|x-2| + C \] ### Step 5: Combine the logarithms Using the properties of logarithms, we can combine the logs: \[ = \frac{1}{3} \left( \log|x-2| - \log|x+1| \right) + C = \frac{1}{3} \log\left( \frac{|x-2|}{|x+1|} \right) + C \] ### Final Expression Thus, we have: \[ \int \frac{dx}{(x+1)(x-2)} = -\frac{1}{3} \log(x+1) + \frac{1}{3} \log(x-2) + C \] Comparing this with \( A \log(x+1) + B \log(x-2) + C \), we find: - \( A = -\frac{1}{3} \) - \( B = \frac{1}{3} \) ### Step 6: Check the options 1. \( A + B = -\frac{1}{3} + \frac{1}{3} = 0 \) (True) 2. \( A \cdot B = -\frac{1}{3} \cdot \frac{1}{3} = -\frac{1}{9} \) (False) 3. \( \frac{A}{B} = \frac{-\frac{1}{3}}{\frac{1}{3}} = -1 \) (True) ### Conclusion The correct options are: - Option 1: \( A + B = 0 \) (True) - Option 3: \( \frac{A}{B} = -1 \) (True)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(x dx)/((x-1)(x-2) equal(A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2)/(x-1)|+C (C) log|((x-1)^2)/(x-2)|+C (D) log|(x-1)(x-2)|+C

int ln(1+x)^(1+x)dx

int log ( 1 + x^(2)) dx

int(1)/(x(3+log x))dx

int(e^(x))/(x+2)[1+(x+2)log(x+2)]dx=

int_(1)^(2) (dx)/(x(1+log x)^(2))

int(dx)/(x(x^2+1) equal(A) log|x|-1/2log(x^2+1)+C (B) log|x|+1/2log(x^2+1)+C (C) -log|x|+1/2log(x^2+1)+C (D) 1/2log|x|+log(x^2+1)+C

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C, then A+B equals to :

Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4)) dx