Home
Class 12
PHYSICS
A charged particle of mass 5 mg and char...

A charged particle of mass 5 mg and charge `q= +2 mu C` has velocity `vec v = 2 hat i - 3 hat j + 4 hat k.` Find out the magnetic force on the charged particle and its acceleration at this instant due to magnetic field `vec B = 3 hat j - 2 hat k. vec v and vec B` are in `ms^-1 and Wbm^-2` , respectively.

Text Solution

AI Generated Solution

To find the magnetic force on a charged particle and its acceleration, we can follow these steps: ### Step 1: Identify the given values - Mass of the particle, \( m = 5 \, \text{mg} = 5 \times 10^{-6} \, \text{kg} \) - Charge of the particle, \( q = +2 \, \mu \text{C} = 2 \times 10^{-6} \, \text{C} \) - Velocity of the particle, \( \vec{v} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \, \text{m/s} \) - Magnetic field, \( \vec{B} = 3 \hat{j} - 2 \hat{k} \, \text{Wb/m}^2 \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MAGNETIC FIELD AND MAGNETIC FORCES

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 1.2|13 Videos
  • MAGNETIC FIELD AND MAGNETIC FORCES

    CENGAGE PHYSICS ENGLISH|Exercise Exercise1.3|14 Videos
  • MAGNETIC FIELD AND MAGNETIC FORCES

    CENGAGE PHYSICS ENGLISH|Exercise Solved Example|25 Videos
  • INDUCTANCE

    CENGAGE PHYSICS ENGLISH|Exercise Concept Based|8 Videos
  • MISCELLANEOUS VOLUME 3

    CENGAGE PHYSICS ENGLISH|Exercise True and False|3 Videos

Similar Questions

Explore conceptually related problems

A charged particle has acceleration vec a = 2 hat i + x hat j in a megnetic field vec B = - 3 hat i + 2 hat j - 4 hat k. Find the value of x.

An alpha particle moving with the velocity vec v = u hat i + hat j ,in a uniform magnetic field vec B = B hat k . Magnetic force on alpha particle is

A charged particle moves with velocity vec v = a hat i + d hat j in a magnetic field vec B = A hat i + D hat j. The force acting on the particle has magnitude F. Then,

A charged particle moves with velocity vec v = a hat i + d hat j in a magnetic field vec B = A hat i + D hat j. The force acting on the particle has magnitude F. Then,

If vec a=2 hat i+ hat k ,\ vec b= hat i+ hat j+ hat k , find the magnitude of vec axx vec bdot

A charged particle of specific charge (i.e charge per unit mass) 0.2 C/kg has velocity 2 hat(i) - 3 hat(j) (m/s) at some instant in a uniform magnetic field 5 hat(i) + 2 hat(j) (tesla). Find the acceleration of the particle at this instant

if vec a = 2 hat i- 3 hat j+hat k and vec b = hat i+2 hat j- 3hat k then vec aXvec b is

A charge q=-4 mu C has an instantaneous velocity vec v = (2 hat i - 3 hat j + hat k)xx10^6 ms^-1 in a uniform magnetic field vec B = (2 hat i + 5 hat j - 3hat k)xx10^-2 T. What is the force on the charge?

If vec a=3 hat i-2 hat j+ka n d vec b=2 hat i-4 hat j-3k , find | vec a-2 vec b|dot

Find | vec a xx vec b|, if vec a=2 hat i+ hat j+3 hat k and vec b=3 hat i+5 hat j-2 hat k .