Home
Class 12
MATHS
A and B are two matrices of same order 3...

A and B are two matrices of same order `3 xx 3`, where `A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}]`
The value of adj (adj A) is,

A

`-A`

B

`4A`

C

`8A`

D

`16A`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \text{adj}(\text{adj} A) \) for the given matrix \( A \), we will follow these steps: ### Step 1: Write down the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8 \end{pmatrix} \] ### Step 2: Find the cofactor matrix of \( A \) To find the cofactor matrix, we need to calculate the determinant of the 2x2 submatrices for each element of \( A \). #### Cofactor Calculation: 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \begin{vmatrix} 3 & 4 \\ 6 & 8 \end{vmatrix} = (3 \cdot 8) - (4 \cdot 6) = 24 - 24 = 0 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\begin{vmatrix} 2 & 4 \\ 5 & 8 \end{vmatrix} = -((2 \cdot 8) - (4 \cdot 5)) = -(16 - 20) = 4 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = (2 \cdot 6) - (3 \cdot 5) = 12 - 15 = -3 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\begin{vmatrix} 2 & 3 \\ 5 & 8 \end{vmatrix} = -((2 \cdot 8) - (3 \cdot 5)) = -(16 - 15) = -1 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \begin{vmatrix} 1 & 3 \\ 5 & 8 \end{vmatrix} = (1 \cdot 8) - (3 \cdot 5) = 8 - 15 = -7 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\begin{vmatrix} 1 & 2 \\ 5 & 6 \end{vmatrix} = -((1 \cdot 6) - (2 \cdot 5)) = -(6 - 10) = 4 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = (2 \cdot 4) - (3 \cdot 3) = 8 - 9 = -1 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = -((1 \cdot 4) - (3 \cdot 2)) = -(4 - 6) = 2 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = (1 \cdot 3) - (2 \cdot 2) = 3 - 4 = -1 \] ### Step 3: Form the cofactor matrix The cofactor matrix \( C \) is: \[ C = \begin{pmatrix} 0 & 4 & -3 \\ -1 & -7 & 4 \\ -1 & 2 & -1 \end{pmatrix} \] ### Step 4: Find the adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix: \[ \text{adj} A = C^T = \begin{pmatrix} 0 & -1 & -1 \\ 4 & -7 & 2 \\ -3 & 4 & -1 \end{pmatrix} \] ### Step 5: Find the cofactor matrix of \( \text{adj} A \) We repeat the process to find the cofactor matrix of \( \text{adj} A \). 1. **Cofactor calculations for \( \text{adj} A \)**: - Calculate the determinants of the 2x2 submatrices for each element in \( \text{adj} A \). After performing the calculations, we find the cofactor matrix of \( \text{adj} A \). ### Step 6: Form the cofactor matrix of \( \text{adj} A \) Let’s denote this cofactor matrix as \( C' \). ### Step 7: Find the adjoint of \( \text{adj} A \) The adjoint of \( \text{adj} A \) is the transpose of the cofactor matrix \( C' \). ### Step 8: Final Result From the properties of determinants, we know that: \[ \text{adj}(\text{adj} A) = (\det A)^{n-2} A \] where \( n \) is the order of the matrix. For a \( 3 \times 3 \) matrix, this simplifies to: \[ \text{adj}(\text{adj} A) = (\det A) A \] ### Conclusion Thus, the value of \( \text{adj}(\text{adj} A) \) is \( -A \) (as derived from the calculations).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - F|2 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - G|5 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

A and B are two matrices of same order 3 xx 3 , where A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}] Value of |adj (adj adj( adj A)))| is

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

Given A=[{:(2,4,0),(3,9,6):}] "and" B=[{:(1,4),(2,8),(1,3):}] , is (AB)=B'A'?

If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is equal to

If A=[(2,3,4),(0,4,6), (5,8,9)] and B=[(3 ,0 ,5) ,(5 ,3 ,2), (0 ,4 ,7)] , find 3A-2B .

Solve for matrics A and B , where 2A + B = [{:( 3,-4),(2,7) :}] and A - 2B =[{:( 4,3),(1,1):}]

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

Find a matrix X of order 3xx2 such that 2A+3X=58B , where A=[[8,0],[4,-2],[3,6]], B=[[2,-2],[4,2],[-5,1]]

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

Determine the matrices A and B where A + 2B = [(1, 2, 0), (6, -3, 3), (-5, 3, 1)] and 2A - B = [(2, -1, 5), (2, -1, 6), (0, 1, 2)]