Home
Class 12
MATHS
Let |A|=|a(ij)|(3xx3) ne 0. Each element...

Let `|A|=|a_(ij)|_(3xx3) ne 0`. Each element `a_(ij)` is multiplied by `k^(i-j)`. Let `|B|` the resulting determinant, where `k_(1)|A|+k_(2)|B|=0`. Then `k_(1)+k_(2)=`

Text Solution

Verified by Experts

The correct Answer is:
0
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - H|1 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - I|4 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - F|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Let |A|=|a_(ij)|_(3xx3) ne0 Each element a_(ij) is multiplied by by k^(i-j) Let |B| the resulting determinant, where k_1 |A|+k_2 |B| =a then k_1+k_2 =

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

Knowledge Check

  • If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

    A
    A
    B
    I
    C
    O
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Let M = [a_(ij)]_(3xx3) where a_(ij) in {-1,1} . Find the maximum possible value of det(M).

    let A={a_(ij)}_(3xx3) such that a_(ij)={3 , i=j and 0,i!=j . then {det(adj(adjA))/5} equals: (where {.} represents fractional part)

    Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)

    If A_(ij) is the cofactor of the element a_(ij) of the determinant |(2,-3,5),(6,0,4),(1,5,-7)| , then write the value of a_(32)., A_(32) .

    Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to

    Let A = [a_(ij)], B=[b_(ij)] are two 3 × 3 matrices such that b_(ij) = lambda ^(i+j-2) a_(ij) & |B| = 81 . Find |A| if lambda = 3.

    Let A=[a_("ij")]_(3xx3), B=[b_("ij")]_(3xx3) and C=[c_("ij")]_(3xx3) be any three matrices, where b_("ij")=3^(i-j) a_("ij") and c_("ij")=4^(i-j) b_("ij") . If det. A=2 , then det. (BC) is equal to _______ .