Home
Class 12
MATHS
If the system of equation ax + by + cz =...

If the system of equation ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0 has non-trivial solution then find the value of `|{:(bc-a^2,ca-b^2,ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant \[ D = \begin{vmatrix} bc - a^2 & ca - b^2 & ab - c^2 \\ ca - b^2 & ab - c^2 & bc - a^2 \\ ab - c^2 & bc - a^2 & ca - b^2 \end{vmatrix} \] given that the system of equations has a non-trivial solution. ### Step 1: Understand the condition for non-trivial solutions For the system of equations \[ \begin{align*} ax + by + cz &= 0 \\ bx + cy + az &= 0 \\ cx + ay + bz &= 0 \end{align*} \] to have a non-trivial solution, the determinant of the coefficients must be zero: \[ \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0 \] ### Step 2: Calculate the determinant We can compute the determinant using the property of determinants. We can add all three rows together: \[ R_1 + R_2 + R_3 \Rightarrow (a+b+c, a+b+c, a+b+c) \] This gives us: \[ \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 3: Factor out the common term Factoring out \(a+b+c\) from the first row, we have: \[ (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 4: Calculate the new determinant Now we need to calculate the determinant \[ \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix} \] Using the determinant formula, we can expand this determinant: \[ = 1 \cdot \begin{vmatrix} c & a \\ a & b \end{vmatrix} - 1 \cdot \begin{vmatrix} b & a \\ c & b \end{vmatrix} + 1 \cdot \begin{vmatrix} b & c \\ c & a \end{vmatrix} \] Calculating these 2x2 determinants: \[ = c \cdot b - a \cdot a - (b \cdot b - a \cdot c) + (b \cdot a - c \cdot c) \] ### Step 5: Simplify the expression Combining all terms, we have: \[ = cb - a^2 - (b^2 - ac) + (ab - c^2) \] This can be simplified further, but we can also use the fact that the original determinant must equal zero due to the condition for non-trivial solutions. ### Final Result Since the determinant of the original system is zero, we conclude that: \[ D = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - H|1 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If the system of linear equations x + 2ay + az = 0 x + 3by + bz = 0 x + 4cy + cz = 0 has a non-zero solution, then a, b, c

if a gt b gt c and the system of equations ax + by + cz = 0, bx + cy + az 0 and cx + ay + bz = 0 has a non-trivial solution, then the quadratic equation ax^(2) + bx + c =0 has

If the system of linear equations x+2ay +az =0,x+3by+bz =0 and x+4cy + cz =0 has a non-zero solution, then a, b, c

|[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|=|[a,b,c],[b,c,a],[c,a,b]|^2

If a gt b gt c and the system of equtions ax +by +cz =0 , bx +cy+az=0 , cx+ay+bz=0 has a non-trivial solution then both the roots of the quadratic equation at^(2)+bt+c are

If the system of linear equations x=cy+bz , y=az+cx , z=bx+ay has a non trivial solution show that a^2+b^2+c^2+2abc=1

Choose the correct answer from the following : The value of |{:(bc,-c^2,ca),(ab,ac,-a^(2)),(-b^2,bc,ab):}|is:

Prove that: |[bc-a^2, ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

If the system of linear equations ax +by+ cz =0 cx + ay + bz =0 bx + cy +az =0 where a,b,c, in R are non-zero and distinct, has a non-zero solution, then: