Home
Class 12
MATHS
The matrices which commule with A=[{:(1,...

The matrices which commule with `A=[{:(1,1),(0,1):}]` in case of multiplication
STATEMENT - 1 : Are always singular.
STATEMENT -2 : Are always non-singular.
STATEMENT -3 : Are always symmetric

A

FFF

B

TTF

C

TTT

D

TFT

Text Solution

AI Generated Solution

The correct Answer is:
To determine which statements about matrices that commute with the matrix \( A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) are true, we will analyze the conditions for a matrix \( B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) to commute with \( A \). ### Step-by-Step Solution: 1. **Define the Commutative Property**: For two matrices \( A \) and \( B \) to commute, they must satisfy the equation \( AB = BA \). 2. **Calculate \( AB \)**: \[ AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 \cdot a + 1 \cdot c & 1 \cdot b + 1 \cdot d \\ 0 \cdot a + 1 \cdot c & 0 \cdot b + 1 \cdot d \end{pmatrix} = \begin{pmatrix} a + c & b + d \\ c & d \end{pmatrix} \] 3. **Calculate \( BA \)**: \[ BA = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a \cdot 1 + b \cdot 0 & a \cdot 1 + b \cdot 1 \\ c \cdot 1 + d \cdot 0 & c \cdot 1 + d \cdot 1 \end{pmatrix} = \begin{pmatrix} a & a + b \\ c & c + d \end{pmatrix} \] 4. **Set \( AB = BA \)**: \[ \begin{pmatrix} a + c & b + d \\ c & d \end{pmatrix} = \begin{pmatrix} a & a + b \\ c & c + d \end{pmatrix} \] 5. **Equate the corresponding elements**: - From the first row, first column: \[ a + c = a \implies c = 0 \] - From the first row, second column: \[ b + d = a + b \implies d = a \] - From the second row, first column: \[ c = c \text{ (always true)} \] - From the second row, second column: \[ d = c + d \implies c = 0 \text{ (already established)} \] 6. **Conclusion about matrix \( B \)**: Thus, the matrix \( B \) that commutes with \( A \) can be expressed as: \[ B = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \] where \( a \) can be any scalar and \( b \) can be any scalar. 7. **Determine the properties of \( B \)**: - **Singularity**: The determinant of \( B \) is given by: \[ \text{det}(B) = a \cdot a - 0 \cdot b = a^2 \] - If \( a = 0 \), then \( B \) is singular. - If \( a \neq 0 \), then \( B \) is non-singular. - **Symmetry**: The matrix \( B \) is symmetric if \( B = B^T \): \[ B^T = \begin{pmatrix} a & 0 \\ b & a \end{pmatrix} \] - For \( B \) to be symmetric, \( b \) must equal \( 0 \). Therefore, \( B \) is not necessarily symmetric. ### Final Evaluation of Statements: - **Statement 1**: "Are always singular." - **False** (can be non-singular if \( a \neq 0 \)). - **Statement 2**: "Are always non-singular." - **False** (can be singular if \( a = 0 \)). - **Statement 3**: "Are always symmetric." - **False** (only symmetric if \( b = 0 \)).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - I|4 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - G|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If A and B are symmetric matrices of same order, then STATEMENT-1: A+B is skew - symmetric matrix. STATEMENT -2 : AB-BA is skew - symmetric matrix. STATEMENT-3 A-B is skew - symmetric matrix .

Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric if A^2=(A^T)^2

Knowledge Check

  • D_(1) is always equal to

    A
    P5
    B
    P10
    C
    P20
    D
    P50
  • Q_(1) is always equal to :

    A
    (i) `P_(1)`
    B
    (ii) `P_(10)`
    C
    (iii) `P_(25)`
    D
    (iv) `P_(50)`
  • Similar Questions

    Explore conceptually related problems

    If a non-singular matrix A is symmetric ,show that A^(-1) is also symmetric

    STATEMENT -1 : Friction always opposes motion . STATEMENT - 2 : Lesser the friction on a surface it is easier to walk on it. STATEMENT -3 : Soles of shoes gets flat due to friction .

    If A is a non-singular matrix, prove that: adjA is also non -singular (adjA)^-1=1/|A| A .

    Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric iff A^2=(A^T)^2 .

    If A^2+A+I=0 , then A is non-singular A!=0 (b) A is singular A^(-1)=-(A+I)

    STATEMENT-1 : The total momentum of a system in C -frame is always zero. and STATEMENT-2 : The total kinetic energy of a system in C -frame is always zero.