Home
Class 12
MATHS
STATEMENT-1: If three points (x(1),y(1))...

STATEMENT-1: If three points `(x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3))` are collinear, then `|{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0`
STATEMENT-2: If `|{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0` then the points `(x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3))` will be collinear.
STATEMENT-3: If lines `a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0` are concurrent then `|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0`

A

T F T

B

T T T

C

F F F

D

F F T .

Text Solution

Verified by Experts

The correct Answer is:
2
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I (SUBJECTIVE TYPE QUESTIONS)|5 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-G (INTEGER ANSWER TYPE QUESTIONS)|4 Videos
  • STATISTICS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C Assertion-Reason|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos

Similar Questions

Explore conceptually related problems

If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}| , then the two triangles with vertices (x_(1),y_(1)) , (x_(2),y_(2)) , (x_(3),y_(3)) and (a_(1),b_(1)) , (a_(2),b_(2)) , (a_(3),b_(3)) must be congruent.

If the points (x_1,y_1),(x_2,y_2)and(x_3,y_3) are collinear, then the rank of the matrix {:[(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)]:} will always be less than

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

If x_(1), x_(2), x_(3) as well as y_(1), y_(2), y_(3) are in GP, with the same common ratio, then the points (x_(1),y_(1)), (x_(2),y_(2)) and (x_(3), y_(3))

To find the condition that the three straight lines A_(1)x+B_(1)y+C_(1)=0, A_(2)x+B_(2)y+C_(2)=0 and A_(3)x+B_(3)y+C_(3)=0 are concurrent.

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

If the lines x=a_(1)y + b_(1), z=c_(1)y +d_(1) and x=a_(2)y +b_(2), z=c_(2)y + d_(2) are perpendicular, then

If A (x_(1), y_(1)), B (x_(2), y_(2)) and C (x_(3), y_(3)) are vertices of an equilateral triangle whose each side is equal to a, then prove that |(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)| is equal to

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.