Home
Class 12
MATHS
If sec alpha=13/5, (0 lt alpha lt pi/2),...

If `sec alpha=13/5, (0 lt alpha lt pi/2)`, then the value of `(2-3cotalpha)/(4-9sqrt(sec^(2)alpha-1))` is

A

`-15/352`

B

`15/352`

C

`30/352`

D

`5/352`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: **Given:** \[ \sec \alpha = \frac{13}{5}, \quad (0 < \alpha < \frac{\pi}{2}) \] We need to find the value of: \[ \frac{2 - 3 \cot \alpha}{4 - 9 \sqrt{\sec^2 \alpha - 1}} \] ### Step 1: Calculate \(\sec^2 \alpha\) We know that: \[ \sec^2 \alpha = \frac{13^2}{5^2} = \frac{169}{25} \] ### Step 2: Calculate \(\tan^2 \alpha\) Using the identity \(\sec^2 \alpha = 1 + \tan^2 \alpha\): \[ \tan^2 \alpha = \sec^2 \alpha - 1 = \frac{169}{25} - 1 = \frac{169}{25} - \frac{25}{25} = \frac{144}{25} \] ### Step 3: Calculate \(\tan \alpha\) Taking the square root: \[ \tan \alpha = \sqrt{\frac{144}{25}} = \frac{12}{5} \] ### Step 4: Calculate \(\cot \alpha\) Since \(\cot \alpha = \frac{1}{\tan \alpha}\): \[ \cot \alpha = \frac{5}{12} \] ### Step 5: Calculate \(\sqrt{\sec^2 \alpha - 1}\) We already calculated \(\tan^2 \alpha\) which is equal to \(\sec^2 \alpha - 1\): \[ \sqrt{\sec^2 \alpha - 1} = \sqrt{\tan^2 \alpha} = \tan \alpha = \frac{12}{5} \] ### Step 6: Substitute values into the expression Now we substitute \(\cot \alpha\) and \(\sqrt{\sec^2 \alpha - 1}\) into the expression: \[ \frac{2 - 3 \cot \alpha}{4 - 9 \sqrt{\sec^2 \alpha - 1}} = \frac{2 - 3 \cdot \frac{5}{12}}{4 - 9 \cdot \frac{12}{5}} \] ### Step 7: Simplify the numerator Calculating the numerator: \[ 2 - 3 \cdot \frac{5}{12} = 2 - \frac{15}{12} = \frac{24}{12} - \frac{15}{12} = \frac{9}{12} = \frac{3}{4} \] ### Step 8: Simplify the denominator Calculating the denominator: \[ 4 - 9 \cdot \frac{12}{5} = 4 - \frac{108}{5} = \frac{20}{5} - \frac{108}{5} = \frac{20 - 108}{5} = \frac{-88}{5} \] ### Step 9: Combine the results Now we can combine the results: \[ \frac{\frac{3}{4}}{\frac{-88}{5}} = \frac{3}{4} \cdot \frac{5}{-88} = \frac{15}{-352} = -\frac{15}{352} \] ### Final Result Thus, the value of the expression is: \[ -\frac{15}{352} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If cos alpha=(5)/(13) and alpha lies in the fourth quadrant, find the value of (2-3cot alpha)/(4-9sqrt(sec^(2)alpha-1)) .

If 0 lt alpha lt beta lt (pi)/(2) then

If cos9alpha=sinalpha and 9alpha lt 90^(@) , then the value of tan5alpha is

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If 0 lt alpha lt (pi)/(3) , then prove that alpha (sec alpha) lt (2pi)/(3).

If sin alpha +cos alpha =(sqrt(3)+1)/(2), 0 lt alpha lt 2pi , then possible values "tan"(alpha)/(2) can take is/are :

If 0 lt alpha lt pi/2 then show that tanalpha+cotalphagtsinalpha+cosalpha

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(c0salpha) is equal to 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. If sec alpha=13/5, (0 lt alpha lt pi/2), then the value of (2-3cotalph...

    Text Solution

    |

  2. (cosec A. cosecB+cotA . cotB)^2-(cosec A. cotB + cosecB. cot A)^2 is

    Text Solution

    |

  3. If tan alpha + cot alpha=a, then the value of tan^(4)alpha + cot^(4)a...

    Text Solution

    |

  4. If a costheta + b sintheta=3 and a sintheta - b costheta=4, then a^(2)...

    Text Solution

    |

  5. Suppose that acostheta = b and csintheta = d, for theta and some const...

    Text Solution

    |

  6. The number of intersecting points on the graph for sinx=x/10 for x in ...

    Text Solution

    |

  7. |(3-sec^2 x)(max) -( 4+tan^2 y)(min)| equals

    Text Solution

    |

  8. If tantheta =p/q, then the value of (p sintheta-q costheta)/(p sinthet...

    Text Solution

    |

  9. The value of sin1.cos2.tan3.cot4.sec5.cosec6 is

    Text Solution

    |

  10. Which of the following is correct ?

    Text Solution

    |

  11. The perimeter of a certain sector of a circle is equal to half that of...

    Text Solution

    |

  12. If alpha, beta, gamma in [0,2pi], then the sum of all possible values ...

    Text Solution

    |

  13. The angles of a triangle are in AdotPdot The number of degrees in the ...

    Text Solution

    |

  14. If ABCD is a cyclic quadrilateral such that 12tanA-5=0 and 5cosB+3=0 t...

    Text Solution

    |

  15. If costheta+sectheta=-2, theta in [0,2pi] then sin^8theta+cos^8theta i...

    Text Solution

    |

  16. If the maximum value of cos(cosx) is a and minimum value is b, then

    Text Solution

    |

  17. If (2sinA)/(1+sinA+cosA)=k then (1+sinA-cosA)/(1+sinA)=

    Text Solution

    |

  18. If sinx+sin^2x=1," then the value of "cos^12x+3cos^10x+3cos^8x+cos^6x-...

    Text Solution

    |

  19. If sum(r=15)^29(cos(rpi/2+theta)=S1 and sum(r=15)^29(sin(rpi/2+theta)...

    Text Solution

    |

  20. The maximum value of cos^(2)(cos(33pi + theta))+sin^(2)(sin(45pi+theta...

    Text Solution

    |