Home
Class 12
MATHS
If sec alpha=13/5, (0 lt alpha lt pi/2),...

If `sec alpha=13/5, (0 lt alpha lt pi/2)`, then the value of `(2-3cotalpha)/(4-9sqrt(sec^(2)alpha-1))` is

A

`-15/352`

B

`15/352`

C

`30/352`

D

`5/352`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: **Given:** \[ \sec \alpha = \frac{13}{5}, \quad (0 < \alpha < \frac{\pi}{2}) \] We need to find the value of: \[ \frac{2 - 3 \cot \alpha}{4 - 9 \sqrt{\sec^2 \alpha - 1}} \] ### Step 1: Calculate \(\sec^2 \alpha\) We know that: \[ \sec^2 \alpha = \frac{13^2}{5^2} = \frac{169}{25} \] ### Step 2: Calculate \(\tan^2 \alpha\) Using the identity \(\sec^2 \alpha = 1 + \tan^2 \alpha\): \[ \tan^2 \alpha = \sec^2 \alpha - 1 = \frac{169}{25} - 1 = \frac{169}{25} - \frac{25}{25} = \frac{144}{25} \] ### Step 3: Calculate \(\tan \alpha\) Taking the square root: \[ \tan \alpha = \sqrt{\frac{144}{25}} = \frac{12}{5} \] ### Step 4: Calculate \(\cot \alpha\) Since \(\cot \alpha = \frac{1}{\tan \alpha}\): \[ \cot \alpha = \frac{5}{12} \] ### Step 5: Calculate \(\sqrt{\sec^2 \alpha - 1}\) We already calculated \(\tan^2 \alpha\) which is equal to \(\sec^2 \alpha - 1\): \[ \sqrt{\sec^2 \alpha - 1} = \sqrt{\tan^2 \alpha} = \tan \alpha = \frac{12}{5} \] ### Step 6: Substitute values into the expression Now we substitute \(\cot \alpha\) and \(\sqrt{\sec^2 \alpha - 1}\) into the expression: \[ \frac{2 - 3 \cot \alpha}{4 - 9 \sqrt{\sec^2 \alpha - 1}} = \frac{2 - 3 \cdot \frac{5}{12}}{4 - 9 \cdot \frac{12}{5}} \] ### Step 7: Simplify the numerator Calculating the numerator: \[ 2 - 3 \cdot \frac{5}{12} = 2 - \frac{15}{12} = \frac{24}{12} - \frac{15}{12} = \frac{9}{12} = \frac{3}{4} \] ### Step 8: Simplify the denominator Calculating the denominator: \[ 4 - 9 \cdot \frac{12}{5} = 4 - \frac{108}{5} = \frac{20}{5} - \frac{108}{5} = \frac{20 - 108}{5} = \frac{-88}{5} \] ### Step 9: Combine the results Now we can combine the results: \[ \frac{\frac{3}{4}}{\frac{-88}{5}} = \frac{3}{4} \cdot \frac{5}{-88} = \frac{15}{-352} = -\frac{15}{352} \] ### Final Result Thus, the value of the expression is: \[ -\frac{15}{352} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If cos alpha=(5)/(13) and alpha lies in the fourth quadrant, find the value of (2-3cot alpha)/(4-9sqrt(sec^(2)alpha-1)) .

If 0 lt alpha lt beta lt (pi)/(2) then

If cos9alpha=sinalpha and 9alpha lt 90^(@) , then the value of tan5alpha is

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If 0 lt alpha lt (pi)/(3) , then prove that alpha (sec alpha) lt (2pi)/(3).

If sin alpha +cos alpha =(sqrt(3)+1)/(2), 0 lt alpha lt 2pi , then possible values "tan"(alpha)/(2) can take is/are :

If 0 lt alpha lt pi/2 then show that tanalpha+cotalphagtsinalpha+cosalpha

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(c0salpha) is equal to 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha