Home
Class 12
MATHS
Let f(x) ={:{(x, "for", 0 le x lt1),( 3...

Let `f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):}`
Then f(x) is

A

continuous at x =1

B

Right continuous at x =1

C

Left continuous at x =1

D

Limit exists at x =1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} x & \text{for } 0 \leq x < 1 \\ 3 - x & \text{for } 1 \leq x \leq 2 \end{cases} \] we need to check the continuity at the point \( x = 1 \). ### Step 1: Find the left-hand limit as \( x \) approaches 1. The left-hand limit is given by: \[ \lim_{x \to 1^-} f(x) \] Since \( x \) is approaching 1 from the left, we use the first piece of the function \( f(x) = x \): \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x = 1 \] ### Step 2: Find the right-hand limit as \( x \) approaches 1. The right-hand limit is given by: \[ \lim_{x \to 1^+} f(x) \] Since \( x \) is approaching 1 from the right, we use the second piece of the function \( f(x) = 3 - x \): \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (3 - x) = 3 - 1 = 2 \] ### Step 3: Find the value of the function at \( x = 1 \). Now we evaluate the function at \( x = 1 \): \[ f(1) = 3 - 1 = 2 \] ### Step 4: Check for continuity. For the function to be continuous at \( x = 1 \), the following condition must hold: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) \] From our calculations: - Left-hand limit: \( \lim_{x \to 1^-} f(x) = 1 \) - Right-hand limit: \( \lim_{x \to 1^+} f(x) = 2 \) - Value of the function: \( f(1) = 2 \) Since \( \lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x) \), the function is not continuous at \( x = 1 \). ### Conclusion: - The function is **not continuous** at \( x = 1 \). - It is **right continuous** at \( x = 1 \) since the right-hand limit equals the function value at that point. - It is **not left continuous** at \( x = 1 \) since the left-hand limit does not equal the function value. - The limit does not exist at \( x = 1 \) because the left-hand and right-hand limits are not equal. ### Final Answer: The correct option is that \( f(x) \) is **right continuous at \( x = 1 \)**. ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0),(x-1 " for " 0 le x le 2):} , then {x in [-2,2]: x le 0 and f(|x|)=x}=

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

Given fuction, {(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} Evaluate int_(0)^(2) f(x) d x .

Given fuction, {(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} Evaluate int_(0)^(2) f(x) d x .

An even periodic functin f : R to R with period 4 is such that f (x)= [{:(max. (|x|"," x ^(2)),, 0 le x lt 1),( x,, 1 le x le 2):} The number of solution of f (x) | 3 sin x| for x in (-6, 6) are :

An even periodic functin f : R to R with period 4 is such that f (x)= [{:(max. (|x|"," x ^(2)),, 0 le x lt 1),( x,, 1 le x le 2):} The number of solution of f (x)= | 3 sin x| for x in (-6, 6) are :

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} The...

    Text Solution

    |

  2. If the function f(x) = (1-x) tan ""(pix)/2 is continuous at x =1 th...

    Text Solution

    |

  3. Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x)...

    Text Solution

    |

  4. Let f(x)={:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is co...

    Text Solution

    |

  5. Let f(x)= {:{((x+a) , x lt1),( ax^(2)+1, xge1):} then f(x) is continu...

    Text Solution

    |

  6. If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous a...

    Text Solution

    |

  7. Let f(x) = (x(2^(x)-1))/( 1- cos x) for x ne 0 what choice of f(0)...

    Text Solution

    |

  8. If f(x)={:{([x]+[-x] , xne 0), ( lambda , x =0):} where [.] denotes...

    Text Solution

    |

  9. If f(x)={((sin[x])/([x]), [x]!=0),(0,[x]=0):} where [.] denotes the ...

    Text Solution

    |

  10. Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

    Text Solution

    |

  11. If f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):} and f(1...

    Text Solution

    |

  12. let f(x) = {:{( x^(2) , x le 0) , ( ax , x gt 0):} then f (x) is d...

    Text Solution

    |

  13. If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/...

    Text Solution

    |

  14. Let f(x) = x|x| then f'(0) is equal to

    Text Solution

    |

  15. If f(x) =|x| , then f'(0) is

    Text Solution

    |

  16. Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x)...

    Text Solution

    |

  17. If f(x )=sqrt(25-x^(2)), then what is underset(xto1)lim(f(x)-f(1))/(x-...

    Text Solution

    |

  18. if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

    Text Solution

    |

  19. If f(x)=log|x|,xne0 then f'(x) equals

    Text Solution

    |

  20. d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

    Text Solution

    |