Home
Class 12
MATHS
The value of lim(x->0)(1-1/2^x)(1/(sqrt(...

The value of `lim_(x->0)(1-1/2^x)(1/(sqrt(tanx+4)-2))`

A

` log_(a) 16`

B

Cannot exist

C

3l n2

D

4 ln 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left(1 - \frac{1}{2^x}\right) \left(\frac{1}{\sqrt{\tan x + 4} - 2}\right) \), we will follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \left(1 - \frac{1}{2^x}\right) \left(\frac{1}{\sqrt{\tan x + 4} - 2}\right) \] ### Step 2: Evaluate the limit directly As \( x \to 0 \): - \( 2^x \to 1 \) so \( 1 - \frac{1}{2^x} \to 0 \) - \( \tan x \to 0 \) so \( \sqrt{\tan x + 4} \to \sqrt{4} = 2 \) thus \( \sqrt{\tan x + 4} - 2 \to 0 \) This gives us the indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule. We need to differentiate the numerator and the denominator. #### Numerator: The numerator is \( 1 - \frac{1}{2^x} \). The derivative is: \[ \frac{d}{dx}\left(1 - \frac{1}{2^x}\right) = 0 + \frac{\ln(2)}{2^x} \] #### Denominator: The denominator is \( \sqrt{\tan x + 4} - 2 \). The derivative is: \[ \frac{d}{dx}\left(\sqrt{\tan x + 4} - 2\right) = \frac{1}{2\sqrt{\tan x + 4}} \cdot \sec^2 x \] ### Step 4: Rewrite the limit using derivatives Now we rewrite the limit using these derivatives: \[ \lim_{x \to 0} \frac{\frac{\ln(2)}{2^x}}{\frac{1}{2\sqrt{\tan x + 4}} \cdot \sec^2 x} \] ### Step 5: Evaluate the limit again As \( x \to 0 \): - \( 2^x \to 1 \) so \( \frac{\ln(2)}{2^x} \to \ln(2) \) - \( \tan x \to 0 \) so \( \sqrt{\tan x + 4} \to 2 \) and \( \sec^2 x \to 1 \) Thus, substituting these values gives: \[ \lim_{x \to 0} \frac{\ln(2)}{\frac{1}{2 \cdot 2} \cdot 1} = \frac{\ln(2)}{\frac{1}{4}} = 4 \ln(2) \] ### Final Answer Therefore, the value of the limit is: \[ \lim_{x \to 0} \left(1 - \frac{1}{2^x}\right) \left(\frac{1}{\sqrt{\tan x + 4} - 2}\right) = 4 \ln(2) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If f(1)=1,f^(prime)(1)=2, then write the value of lim_(x->1)(sqrt(f(x))-1)/(sqrt(x)-1)

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt((tanx-sinx)+…oo))))/(-1+sqrt(x^(3)+sqrt(x^(3)+sqrt(x^(3)+…oo)))) is

The value of lim_(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is 4 (b) 1/2 (c) 2 (d) 1/4

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :