Home
Class 12
MATHS
The value of lim(x->0)(1-1/2^x)(1/(sqrt(...

The value of `lim_(x->0)(1-1/2^x)(1/(sqrt(tanx+4)-2))`

A

` log_(a) 16`

B

Cannot exist

C

3l n2

D

4 ln 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left(1 - \frac{1}{2^x}\right) \left(\frac{1}{\sqrt{\tan x + 4} - 2}\right) \), we will follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \left(1 - \frac{1}{2^x}\right) \left(\frac{1}{\sqrt{\tan x + 4} - 2}\right) \] ### Step 2: Evaluate the limit directly As \( x \to 0 \): - \( 2^x \to 1 \) so \( 1 - \frac{1}{2^x} \to 0 \) - \( \tan x \to 0 \) so \( \sqrt{\tan x + 4} \to \sqrt{4} = 2 \) thus \( \sqrt{\tan x + 4} - 2 \to 0 \) This gives us the indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule. We need to differentiate the numerator and the denominator. #### Numerator: The numerator is \( 1 - \frac{1}{2^x} \). The derivative is: \[ \frac{d}{dx}\left(1 - \frac{1}{2^x}\right) = 0 + \frac{\ln(2)}{2^x} \] #### Denominator: The denominator is \( \sqrt{\tan x + 4} - 2 \). The derivative is: \[ \frac{d}{dx}\left(\sqrt{\tan x + 4} - 2\right) = \frac{1}{2\sqrt{\tan x + 4}} \cdot \sec^2 x \] ### Step 4: Rewrite the limit using derivatives Now we rewrite the limit using these derivatives: \[ \lim_{x \to 0} \frac{\frac{\ln(2)}{2^x}}{\frac{1}{2\sqrt{\tan x + 4}} \cdot \sec^2 x} \] ### Step 5: Evaluate the limit again As \( x \to 0 \): - \( 2^x \to 1 \) so \( \frac{\ln(2)}{2^x} \to \ln(2) \) - \( \tan x \to 0 \) so \( \sqrt{\tan x + 4} \to 2 \) and \( \sec^2 x \to 1 \) Thus, substituting these values gives: \[ \lim_{x \to 0} \frac{\ln(2)}{\frac{1}{2 \cdot 2} \cdot 1} = \frac{\ln(2)}{\frac{1}{4}} = 4 \ln(2) \] ### Final Answer Therefore, the value of the limit is: \[ \lim_{x \to 0} \left(1 - \frac{1}{2^x}\right) \left(\frac{1}{\sqrt{\tan x + 4} - 2}\right) = 4 \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If f(1)=1,f^(prime)(1)=2, then write the value of lim_(x->1)(sqrt(f(x))-1)/(sqrt(x)-1)

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt((tanx-sinx)+…oo))))/(-1+sqrt(x^(3)+sqrt(x^(3)+sqrt(x^(3)+…oo)))) is

The value of lim_(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is 4 (b) 1/2 (c) 2 (d) 1/4

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. The value of lim(x->0)(1-1/2^x)(1/(sqrt(tanx+4)-2))

    Text Solution

    |

  2. lf lim(x to 0) (sin x)/( tan 3x) =a, lim( x to oo) (sinx)/x =b , lim( ...

    Text Solution

    |

  3. Let a = lim(x->0) x cotx and b = lim(x->0) xlog x, then

    Text Solution

    |

  4. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  5. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  6. Find lim( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+)...

    Text Solution

    |

  7. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  8. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  9. Evaluate: ("lim")(xvec0)(2^x-1)/(sqrt(1+x)-1)

    Text Solution

    |

  10. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  11. ("lim")(xvec0)(sin(picos^2x)/(x^2)i se q u a lto -pi (b) pi (c) pi/...

    Text Solution

    |

  12. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  13. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  14. lim(x to oo) ((x-3)/(x+2))^x is equal to :

    Text Solution

    |

  15. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  16. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  17. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  18. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  19. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  20. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |