Home
Class 12
MATHS
lim(x to 0) (1+ax)^(b/x) =e^(2) , " wher...

`lim_(x to 0) (1+ax)^(b/x) =e^(2)` , " where" a, b in N` such that a+ b = 3 , then the value of (a,b) is

A

(16,8)

B

(8,4)

C

(2,1)

D

(1,2)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} (1 + ax)^{\frac{b}{x}} = e^2 \] where \(a\) and \(b\) are natural numbers such that \(a + b = 3\), we can follow these steps: ### Step 1: Identify the form of the limit As \(x\) approaches 0, the expression \((1 + ax)\) approaches \(1\), and thus we have the indeterminate form \(1^{\infty}\). ### Step 2: Use the exponential limit property For limits of the form \(1^{\infty}\), we can rewrite the expression using the exponential function: \[ \lim_{x \to 0} (1 + ax)^{\frac{b}{x}} = e^{\lim_{x \to 0} \frac{b}{x} \ln(1 + ax)} \] ### Step 3: Simplify \(\ln(1 + ax)\) Using the Taylor series expansion for \(\ln(1 + u)\) around \(u = 0\): \[ \ln(1 + ax) \approx ax \quad \text{as } x \to 0 \] ### Step 4: Substitute back into the limit Now substituting this back into our limit gives: \[ \lim_{x \to 0} \frac{b}{x} \ln(1 + ax) \approx \lim_{x \to 0} \frac{b}{x} (ax) = \lim_{x \to 0} ab = ab \] ### Step 5: Set the limit equal to \(e^2\) From the limit, we have: \[ e^{ab} = e^2 \implies ab = 2 \] ### Step 6: Set up the system of equations Now we have two equations: 1. \(ab = 2\) 2. \(a + b = 3\) ### Step 7: Solve for \(a\) and \(b\) From the second equation, we can express \(a\) in terms of \(b\): \[ a = 3 - b \] Substituting this into the first equation: \[ (3 - b)b = 2 \] Expanding this gives: \[ 3b - b^2 = 2 \] Rearranging leads to: \[ b^2 - 3b + 2 = 0 \] ### Step 8: Factor the quadratic Factoring the quadratic equation: \[ (b - 1)(b - 2) = 0 \] This gives us the roots: \[ b = 1 \quad \text{or} \quad b = 2 \] ### Step 9: Find corresponding values of \(a\) Using \(b = 1\): \[ a = 3 - 1 = 2 \] Using \(b = 2\): \[ a = 3 - 2 = 1 \] ### Final Result Thus, the ordered pairs \((a, b)\) that satisfy the conditions are: \[ (2, 1) \quad \text{and} \quad (1, 2) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - E|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

if lim_(x->0)(1+a x)^(b / x)=e^2, where a and b are natural numbers, then

If lim_(xto0) (1+ax+bx^(2))^(2//x)=e^(3) , then find the values of a and b.

If lim_(x->0)[1+x1n(1+b^2)]^(1/x)=2bsin^2theta,b >0 ,where theta in (-pi,pi], then the value of theta is (a) +-pi/4 (b) +-pi/3 (c) +-pi/6 (d) +-pi/2

If ("lim")_(x to0)(a e^x-b)/x = 2 , then find the value of a a n d bdot

lim_(xto0) (x^(a)sin^(b)x)/(sin(x^(c))) , where a,b,c inR~{0}, exists and has non-zero value. Then,

If lim_(x to 1) (1 + ax + bx^(2))^((c )/(x - 1)) = e^(3) , then the value of a + b + bc + 2009 is…….

If lim_(x->0)(1+a x+b x^2)^(2/x)=e^3, then find the value of a and b.

If ("lim")_(xvec0)((1+a^3)+8e^(1/x))/(1+(2+b+b^2)e^(1/x))=2, where a ,b in R , then the possible ordered pair (a,b) is (2,-2) (b) (1,-2) (1,1) (d) (-1,1)

If lim_(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1 , then the value of ab is euqal to

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .