Home
Class 12
MATHS
If xyz = 1 and x, y, z gt 0 then the min...

If `xyz = 1` and `x, y, z gt 0` then the minimum value of the expression `(x+2y)(y+2z)(z+2x)` is

A

`81`

B

`9`

C

`18`

D

`27`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \((x + 2y)(y + 2z)(z + 2x)\) given that \(xyz = 1\) and \(x, y, z > 0\), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Apply AM-GM Inequality:** We will apply the AM-GM inequality to each of the terms in the expression: \[ x + 2y \geq 3\sqrt[3]{x \cdot y^2} \] \[ y + 2z \geq 3\sqrt[3]{y \cdot z^2} \] \[ z + 2x \geq 3\sqrt[3]{z \cdot x^2} \] 2. **Multiply the Inequalities:** Now, we multiply the three inequalities: \[ (x + 2y)(y + 2z)(z + 2x) \geq \left(3\sqrt[3]{x \cdot y^2}\right)\left(3\sqrt[3]{y \cdot z^2}\right)\left(3\sqrt[3]{z \cdot x^2}\right) \] This simplifies to: \[ (x + 2y)(y + 2z)(z + 2x) \geq 27 \sqrt[3]{(xyz)^3} \] 3. **Substitute \(xyz = 1\):** Since we know that \(xyz = 1\): \[ (x + 2y)(y + 2z)(z + 2x) \geq 27 \sqrt[3]{1^3} = 27 \] 4. **Conclusion:** Therefore, the minimum value of the expression \((x + 2y)(y + 2z)(z + 2x)\) is \(27\). ### Final Answer: The minimum value of \((x + 2y)(y + 2z)(z + 2x)\) is **27**. ---

To find the minimum value of the expression \((x + 2y)(y + 2z)(z + 2x)\) given that \(xyz = 1\) and \(x, y, z > 0\), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Apply AM-GM Inequality:** We will apply the AM-GM inequality to each of the terms in the expression: \[ x + 2y \geq 3\sqrt[3]{x \cdot y^2} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If x > 0, y > 0, z>0 and x + y + z = 1 then the minimum value of x/(2-x)+y/(2-y)+z/(2-z) is:

If x,y,z are in H.P then the value of expression log(x+z)+log(x-2y+z)=

Factorize of the expression: a^3x+a^2(x-y)-a(y+z)-z\

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

If x+y+z=1 , then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)^(2) is , where x,y,z inR^(+)

If x^(2)+y^(2)+z^(2)=1"for " x,y,z inR, then the maximum value of x^(3)+y^(3)+z^(3)-3xyz is

If x^(3) + y^(3) + z^(3) = 3xyz and x + y + z = 0 , find the value of : ((x+y)^(2))/(xy) + ((y+z)^(2))/(yz) + ((z+x)^(2))/(zx)

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If (x_(0), y_(0), z_(0)) is any solution of the system of equations 2x-y-z=1, -x-y+2z=1 and x-2y+z=2 , then the value of (x_(0)^(2)-y_(0)^(2)+1)/(z_(0)) (where, z_(0) ne 0 ) is