Home
Class 12
MATHS
Sum of the series sum0^10 (-1)^r 10Cr (1...

Sum of the series `sum_0^10 (-1)^r 10C_r (1/3^r+8^r/3^(2r)) is `

A

`(2^(10)+1)/(3^(20))`

B

`((2)/(3))^(10) - ((1)/(9))^(10)`

C

`(3^(10)-1)/(3^(20))`

D

`(6^(10)+1)/(3^(20))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ \sum_{r=0}^{10} (-1)^r \binom{10}{r} \left( \frac{1}{3^r} + \frac{8^r}{3^{2r}} \right), \] we can break this down into two separate sums. Let's denote the sum as \( S \): \[ S = \sum_{r=0}^{10} (-1)^r \binom{10}{r} \frac{1}{3^r} + \sum_{r=0}^{10} (-1)^r \binom{10}{r} \frac{8^r}{3^{2r}}. \] ### Step 1: Simplifying the first sum The first sum can be expressed as: \[ S_1 = \sum_{r=0}^{10} (-1)^r \binom{10}{r} \frac{1}{3^r}. \] Using the binomial theorem, we know that: \[ \sum_{r=0}^{n} (-1)^r \binom{n}{r} x^r = (1-x)^n. \] In our case, \( n = 10 \) and \( x = \frac{1}{3} \): \[ S_1 = \left(1 - \frac{1}{3}\right)^{10} = \left(\frac{2}{3}\right)^{10}. \] ### Step 2: Simplifying the second sum The second sum can be expressed as: \[ S_2 = \sum_{r=0}^{10} (-1)^r \binom{10}{r} \frac{8^r}{3^{2r}} = \sum_{r=0}^{10} (-1)^r \binom{10}{r} \left(\frac{8}{9}\right)^r. \] Again, applying the binomial theorem: \[ S_2 = \left(1 - \frac{8}{9}\right)^{10} = \left(\frac{1}{9}\right)^{10}. \] ### Step 3: Combining the results Now we can combine \( S_1 \) and \( S_2 \): \[ S = S_1 + S_2 = \left(\frac{2}{3}\right)^{10} + \left(\frac{1}{9}\right)^{10}. \] ### Step 4: Finding a common denominator To combine these fractions, we can express \( \left(\frac{1}{9}\right)^{10} \) in terms of base 3: \[ \left(\frac{1}{9}\right)^{10} = \left(\frac{1}{3^2}\right)^{10} = \frac{1}{3^{20}}. \] Now we have: \[ S = \frac{2^{10}}{3^{10}} + \frac{1}{3^{20}}. \] Finding a common denominator, we get: \[ S = \frac{2^{10} \cdot 3^{10}}{3^{20}} + \frac{1}{3^{20}} = \frac{2^{10} \cdot 3^{10} + 1}{3^{20}}. \] ### Final Result Thus, the sum of the series is: \[ S = \frac{2^{10} \cdot 3^{10} + 1}{3^{20}}. \]

To find the sum of the series \[ \sum_{r=0}^{10} (-1)^r \binom{10}{r} \left( \frac{1}{3^r} + \frac{8^r}{3^{2r}} \right), \] we can break this down into two separate sums. Let's denote the sum as \( S \): ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Sum of the series sum_(r=0)^n (-1)^r ^nC_r[i^(5r)+i^(6r)+i^(7r)+i^(8r)] is

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

The sum of the series sum_(r=1)^(n) (-1)^(r-1).""^(n)C_(r)(a-r), n gt 1 is equal to :

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

Find the sum of the series sum_(r=11)^(99)(1/(rsqrt(r+1)+(r+1)sqrtr))

Find the sum of the series sum_(r=0)^(50)(""^(100-r)C_(25))/(100-r)

sum_(r=1)^10 r/(1-3r^2+r^4)

The sum of the series sum_(r=0) ^(n) "r."^(2n)C_(r), is

The sum of the series Sigma_(r = 0)^(10) ""^(20)C_(r) " is " 2^(19) + (""^(20)C_(10))/(2)

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Sum of the series sum0^10 (-1)^r 10Cr (1/3^r+8^r/3^(2r)) is

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |