Home
Class 12
MATHS
Sum of the series sum0^10 (-1)^r 10Cr (1...

Sum of the series `sum_0^10 (-1)^r 10C_r (1/3^r+8^r/3^(2r)) is `

A

`(2^(10)+1)/(3^(20))`

B

`((2)/(3))^(10) - ((1)/(9))^(10)`

C

`(3^(10)-1)/(3^(20))`

D

`(6^(10)+1)/(3^(20))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ \sum_{r=0}^{10} (-1)^r \binom{10}{r} \left( \frac{1}{3^r} + \frac{8^r}{3^{2r}} \right), \] we can break this down into two separate sums. Let's denote the sum as \( S \): \[ S = \sum_{r=0}^{10} (-1)^r \binom{10}{r} \frac{1}{3^r} + \sum_{r=0}^{10} (-1)^r \binom{10}{r} \frac{8^r}{3^{2r}}. \] ### Step 1: Simplifying the first sum The first sum can be expressed as: \[ S_1 = \sum_{r=0}^{10} (-1)^r \binom{10}{r} \frac{1}{3^r}. \] Using the binomial theorem, we know that: \[ \sum_{r=0}^{n} (-1)^r \binom{n}{r} x^r = (1-x)^n. \] In our case, \( n = 10 \) and \( x = \frac{1}{3} \): \[ S_1 = \left(1 - \frac{1}{3}\right)^{10} = \left(\frac{2}{3}\right)^{10}. \] ### Step 2: Simplifying the second sum The second sum can be expressed as: \[ S_2 = \sum_{r=0}^{10} (-1)^r \binom{10}{r} \frac{8^r}{3^{2r}} = \sum_{r=0}^{10} (-1)^r \binom{10}{r} \left(\frac{8}{9}\right)^r. \] Again, applying the binomial theorem: \[ S_2 = \left(1 - \frac{8}{9}\right)^{10} = \left(\frac{1}{9}\right)^{10}. \] ### Step 3: Combining the results Now we can combine \( S_1 \) and \( S_2 \): \[ S = S_1 + S_2 = \left(\frac{2}{3}\right)^{10} + \left(\frac{1}{9}\right)^{10}. \] ### Step 4: Finding a common denominator To combine these fractions, we can express \( \left(\frac{1}{9}\right)^{10} \) in terms of base 3: \[ \left(\frac{1}{9}\right)^{10} = \left(\frac{1}{3^2}\right)^{10} = \frac{1}{3^{20}}. \] Now we have: \[ S = \frac{2^{10}}{3^{10}} + \frac{1}{3^{20}}. \] Finding a common denominator, we get: \[ S = \frac{2^{10} \cdot 3^{10}}{3^{20}} + \frac{1}{3^{20}} = \frac{2^{10} \cdot 3^{10} + 1}{3^{20}}. \] ### Final Result Thus, the sum of the series is: \[ S = \frac{2^{10} \cdot 3^{10} + 1}{3^{20}}. \]

To find the sum of the series \[ \sum_{r=0}^{10} (-1)^r \binom{10}{r} \left( \frac{1}{3^r} + \frac{8^r}{3^{2r}} \right), \] we can break this down into two separate sums. Let's denote the sum as \( S \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Sum of the series sum_(r=0)^n (-1)^r ^nC_r[i^(5r)+i^(6r)+i^(7r)+i^(8r)] is

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

The sum of the series sum_(r=1)^(n) (-1)^(r-1).""^(n)C_(r)(a-r), n gt 1 is equal to :

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

Find the sum of the series sum_(r=11)^(99)(1/(rsqrt(r+1)+(r+1)sqrtr))

Find the sum of the series sum_(r=0)^(50)(""^(100-r)C_(25))/(100-r)

sum_(r=1)^10 r/(1-3r^2+r^4)

The sum of the series sum_(r=0) ^(n) "r."^(2n)C_(r), is

The sum of the series Sigma_(r = 0)^(10) ""^(20)C_(r) " is " 2^(19) + (""^(20)C_(10))/(2)

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =