Home
Class 12
MATHS
The expression [x+(x^(3)-1)^((1)/(2))]...

The expression
`[x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(5)` is a polynomial of degree

Text Solution

AI Generated Solution

The correct Answer is:
To determine the degree of the polynomial given by the expression \[ [x + (x^3 - 1)^{1/2}]^5 + [x - (x^3 - 1)^{1/2}]^5, \] we will follow these steps: ### Step 1: Rewrite the Expression We can rewrite the expression using \( a = x \) and \( b = (x^3 - 1)^{1/2} \): \[ (a + b)^5 + (a - b)^5. \] ### Step 2: Apply the Binomial Theorem Using the binomial theorem, we expand both terms: 1. For \( (a + b)^5 \): \[ (a + b)^5 = \sum_{k=0}^{5} \binom{5}{k} a^{5-k} b^k. \] 2. For \( (a - b)^5 \): \[ (a - b)^5 = \sum_{k=0}^{5} \binom{5}{k} a^{5-k} (-b)^k = \sum_{k=0}^{5} \binom{5}{k} a^{5-k} (-1)^k b^k. \] ### Step 3: Combine the Expansions Now, we combine both expansions: \[ (a + b)^5 + (a - b)^5 = \sum_{k=0}^{5} \binom{5}{k} a^{5-k} b^k + \sum_{k=0}^{5} \binom{5}{k} a^{5-k} (-1)^k b^k. \] ### Step 4: Simplify the Expression Notice that terms where \( k \) is odd will cancel out, while terms where \( k \) is even will double: \[ = 2 \sum_{k \text{ even}} \binom{5}{k} a^{5-k} b^k. \] The even values of \( k \) are \( 0, 2, 4 \). ### Step 5: Identify the Highest Degree Term Now, we calculate the highest degree terms: - For \( k = 0 \): \[ 2 \binom{5}{0} a^5 b^0 = 2x^5. \] - For \( k = 2 \): \[ 2 \binom{5}{2} a^3 b^2 = 2 \cdot 10 x^3 (x^3 - 1) = 20 x^3 (x^3 - 1) = 20 x^6 - 20 x^3. \] - For \( k = 4 \): \[ 2 \binom{5}{4} a^1 b^4 = 2 \cdot 5 x (x^3 - 1)^2. \] The term \( (x^3 - 1)^2 \) expands to \( x^6 - 2x^3 + 1 \), leading to: \[ 10 x^7 - 20 x^4 + 10 x. \] ### Step 6: Combine All Terms Now, we combine all the highest degree terms: - From \( k = 0 \): \( 2x^5 \) - From \( k = 2 \): \( 20x^6 - 20x^3 \) - From \( k = 4 \): \( 10x^7 - 20x^4 + 10x \) The highest degree term is \( 10x^7 \). ### Conclusion Thus, the degree of the polynomial is: \[ \text{Degree} = 7. \]

To determine the degree of the polynomial given by the expression \[ [x + (x^3 - 1)^{1/2}]^5 + [x - (x^3 - 1)^{1/2}]^5, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The expression (x+((x^3-1)^(1/2))/2)^5+""(x-((x^3-1)^(1/2))/2)^5 is a polynomial of degree a. 5 b. 6 c. 7 d. 8

The expression (sqrt(2x^2+1)+sqrt(2x^2-1))^6 + (2/(sqrt(2x^2+1)+sqrt(2x^2-1)))^6 is polynomial of degree

Simplify the expression 8(x^(2)-x-1) + 5 (2x-2) - 3 (x^(2) +x - 1)

Expand of the expression : (x/3+1/x)^5

lim_(x rarr1)(1)/((x-1))((1)/(x+3)-(2)/(3x+5))

(x^2-1)/(2x+5)<3

(x^2-1)/(2x+5)<3

2((2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))^(3) +(1)/(5)((2x)/(x^(2)+1))^(5)+…..oo)=

Prove that log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)

Find the sum of the following algebraic expressions : 3x^(3) - 5x^(2) + 2x + 1 , 3x - 2x^(3) - x^(3) , 2x^(2) - 7x + 9

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |