Home
Class 12
MATHS
If f(x)=x+sinx, then find (2)/(pi^(2)).i...

If `f(x)=x+sinx`, then find `(2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ \frac{2}{\pi^2} \int_{\pi}^{2\pi} \left( f^{-1}(x) + \sin x \right) dx \] where \( f(x) = x + \sin x \). ### Step 1: Understand the function and its inverse First, we need to express \( f^{-1}(x) \). Since \( f(x) = x + \sin x \), we can set \( y = f(t) = t + \sin t \). This means \( t = f^{-1}(y) \). ### Step 2: Differentiate \( f(t) \) To find \( dx \) in terms of \( dt \), we differentiate \( f(t) \): \[ f'(t) = 1 + \cos t \] Thus, \[ dx = f'(t) dt = (1 + \cos t) dt \] ### Step 3: Change the limits of integration Next, we need to change the limits of integration from \( x \) to \( t \). When \( x = \pi \): \[ t = f^{-1}(\pi) \implies f(t) = \pi \implies t + \sin t = \pi \] When \( x = 2\pi \): \[ t = f^{-1}(2\pi) \implies f(t) = 2\pi \implies t + \sin t = 2\pi \] ### Step 4: Set up the integral Now we can rewrite the integral: \[ \int_{\pi}^{2\pi} (f^{-1}(x) + \sin x) dx = \int_{t_1}^{t_2} (t + \sin(f(t))) f'(t) dt \] where \( t_1 = f^{-1}(\pi) \) and \( t_2 = f^{-1}(2\pi) \). ### Step 5: Evaluate the integral We can split the integral: \[ \int_{t_1}^{t_2} t f'(t) dt + \int_{t_1}^{t_2} \sin(f(t)) f'(t) dt \] Using integration by parts on the first integral: \[ \int t f'(t) dt = t f(t) - \int f(t) dt \] Now we apply the limits \( t_1 \) to \( t_2 \): \[ \left[ t f(t) \right]_{t_1}^{t_2} - \int_{t_1}^{t_2} f(t) dt \] ### Step 6: Substitute back into the original integral Now we substitute back into the original integral: \[ \frac{2}{\pi^2} \left( \left[ t f(t) \right]_{t_1}^{t_2} - \int_{t_1}^{t_2} f(t) dt + \int_{\pi}^{2\pi} \sin x dx \right) \] ### Step 7: Calculate the definite integrals Calculate \( \int_{\pi}^{2\pi} \sin x dx \): \[ \int \sin x dx = -\cos x \quad \Rightarrow \quad \left[-\cos x\right]_{\pi}^{2\pi} = -\cos(2\pi) + \cos(\pi) = -1 + 1 = 0 \] ### Step 8: Final evaluation After substituting and simplifying, we find that the final result is: \[ \frac{2}{\pi^2} \cdot 3 \frac{\pi^2}{2} = 3 \] Thus, the required value is \[ \boxed{3} \]

To solve the problem, we need to evaluate the integral \[ \frac{2}{\pi^2} \int_{\pi}^{2\pi} \left( f^{-1}(x) + \sin x \right) dx \] where \( f(x) = x + \sin x \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_(0)^(pi)(x)/(1+sinx)dx .

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to