Home
Class 12
MATHS
If f(x)=x+sinx, then find (2)/(pi^(2)).i...

If `f(x)=x+sinx`, then find `(2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ \frac{2}{\pi^2} \int_{\pi}^{2\pi} \left( f^{-1}(x) + \sin x \right) dx \] where \( f(x) = x + \sin x \). ### Step 1: Understand the function and its inverse First, we need to express \( f^{-1}(x) \). Since \( f(x) = x + \sin x \), we can set \( y = f(t) = t + \sin t \). This means \( t = f^{-1}(y) \). ### Step 2: Differentiate \( f(t) \) To find \( dx \) in terms of \( dt \), we differentiate \( f(t) \): \[ f'(t) = 1 + \cos t \] Thus, \[ dx = f'(t) dt = (1 + \cos t) dt \] ### Step 3: Change the limits of integration Next, we need to change the limits of integration from \( x \) to \( t \). When \( x = \pi \): \[ t = f^{-1}(\pi) \implies f(t) = \pi \implies t + \sin t = \pi \] When \( x = 2\pi \): \[ t = f^{-1}(2\pi) \implies f(t) = 2\pi \implies t + \sin t = 2\pi \] ### Step 4: Set up the integral Now we can rewrite the integral: \[ \int_{\pi}^{2\pi} (f^{-1}(x) + \sin x) dx = \int_{t_1}^{t_2} (t + \sin(f(t))) f'(t) dt \] where \( t_1 = f^{-1}(\pi) \) and \( t_2 = f^{-1}(2\pi) \). ### Step 5: Evaluate the integral We can split the integral: \[ \int_{t_1}^{t_2} t f'(t) dt + \int_{t_1}^{t_2} \sin(f(t)) f'(t) dt \] Using integration by parts on the first integral: \[ \int t f'(t) dt = t f(t) - \int f(t) dt \] Now we apply the limits \( t_1 \) to \( t_2 \): \[ \left[ t f(t) \right]_{t_1}^{t_2} - \int_{t_1}^{t_2} f(t) dt \] ### Step 6: Substitute back into the original integral Now we substitute back into the original integral: \[ \frac{2}{\pi^2} \left( \left[ t f(t) \right]_{t_1}^{t_2} - \int_{t_1}^{t_2} f(t) dt + \int_{\pi}^{2\pi} \sin x dx \right) \] ### Step 7: Calculate the definite integrals Calculate \( \int_{\pi}^{2\pi} \sin x dx \): \[ \int \sin x dx = -\cos x \quad \Rightarrow \quad \left[-\cos x\right]_{\pi}^{2\pi} = -\cos(2\pi) + \cos(\pi) = -1 + 1 = 0 \] ### Step 8: Final evaluation After substituting and simplifying, we find that the final result is: \[ \frac{2}{\pi^2} \cdot 3 \frac{\pi^2}{2} = 3 \] Thus, the required value is \[ \boxed{3} \]

To solve the problem, we need to evaluate the integral \[ \frac{2}{\pi^2} \int_{\pi}^{2\pi} \left( f^{-1}(x) + \sin x \right) dx \] where \( f(x) = x + \sin x \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_(0)^(pi)(x)/(1+sinx)dx .

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If f(x)=x+sinx, then find (2)/(pi^(2)).int(pi)^(2pi)(f^(-1)(x)+sinx)dx...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |