Home
Class 12
MATHS
If inte^(x)/(x^(n))dx and -e^(x)/(k(1)x^...

If `inte^(x)/(x^(n))dx` and `-e^(x)/(k_(1)x^(n-1))+1/(k_(2)-1)I_(n-1)`, then `(k_(2)-k_(1))` is equal to:

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find \( k_2 - k_1 \) based on the provided integral equation. Let's break it down step by step. ### Step 1: Understand the integral We start with the integral: \[ I_n = \int \frac{e^x}{x^n} \, dx \] According to the problem, this integral can be expressed as: \[ I_n = -\frac{e^x}{k_1 x^{n-1}} + \frac{1}{k_2 - 1} I_{n-1} \] where \( I_{n-1} = \int \frac{e^x}{x^{n-1}} \, dx \). ### Step 2: Apply Integration by Parts We will use integration by parts to evaluate \( I_n \). Let's set: - \( u = e^x \) (which we will differentiate) - \( dv = x^{-n} \, dx \) (which we will integrate) Using integration by parts: \[ I_n = \int u \, dv = u v - \int v \, du \] This gives us: \[ I_n = e^x \int x^{-n} \, dx - \int \left( e^x \cdot \frac{d}{dx}(x^{-n}) \right) \, dx \] ### Step 3: Compute the integrals The integral \( \int x^{-n} \, dx \) can be computed as: \[ \int x^{-n} \, dx = \frac{x^{-n+1}}{-n+1} = \frac{x^{1-n}}{1-n} \] Now, we differentiate \( x^{-n} \): \[ \frac{d}{dx}(x^{-n}) = -n x^{-n-1} \] Thus, we can write: \[ I_n = e^x \cdot \frac{x^{1-n}}{1-n} - \int e^x \cdot (-n x^{-n-1}) \, dx \] This simplifies to: \[ I_n = \frac{e^x x^{1-n}}{1-n} + n I_{n-1} \] ### Step 4: Rearranging the expression Now we can rearrange the expression for \( I_n \): \[ I_n = \frac{e^x}{1-n} x^{1-n} + n I_{n-1} \] This gives us: \[ I_n = -\frac{e^x}{n-1} x^{n-1} + \frac{1}{n-1} I_{n-1} \] ### Step 5: Comparing coefficients From the problem statement, we have: \[ I_n = -\frac{e^x}{k_1 x^{n-1}} + \frac{1}{k_2 - 1} I_{n-1} \] By comparing coefficients, we can identify: \[ k_1 = n - 1 \] \[ k_2 = n \] ### Step 6: Calculate \( k_2 - k_1 \) Now we can find \( k_2 - k_1 \): \[ k_2 - k_1 = n - (n - 1) = 1 \] ### Final Answer Thus, the value of \( k_2 - k_1 \) is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-2|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-3|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

If int (2^(1//x))/(x^(2))dx= k.2^(1//x) , then k is equal to :

Knowledge Check

  • If int_(0)^(k) ( 1)/(9x^(2) + 1) dx = ( pi )/( 12) , then k is equal to

    A
    `(pi)/(4)`
    B
    `(1)/(3)`
    C
    3
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these

    If int(1+xcosx)/(x(1-x^(2)e^(2sinx)))dx = k" ln "sqrt((x^(2)e^(2 sinx))/(1-x^(2)e^(2sinx)))+C then k is equal to:

    int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

    Let x_(1),x_(2),x_(3), . . .,x_(k) be the divisors of positive integer ' n ' (including 1 and x ). If x_(1)+x_(2)+ . . .+x_(k)=75 , then sum_(i=1)^(k)(1)/(x_(i)) is equal to:

    If ninN and int(x^(7n)+x^(2n)+x^n)(2x^(6n)+7x^n+14)^(1/n)dx=(2x^(7n)+7x^(2n)+14x^n)^((n+1)/n)/(k(n+1))+c , then, k is equal to…

    If I_(n)=int(sinx+cosx)^(n) dx, snd I_(n)=1/n(sinx+cosx)^(n-1)(sinx-cosx)+(2k)/(n) I_(n-2) then k=

    If lim_(a rarr infty) (1)/(a)int_(0)^(infty)(x^(2)+ax+1)/(1+x^(4)). "tan"^(-1)((1)/(x))dx is equal to (pi^(2))/(K), where K in N, then K equals to