Home
Class 12
MATHS
int(1)/(sin(x-a)cos(x-b))dx is equal to...

`int(1)/(sin(x-a)cos(x-b))dx` is equal to

A

`1/(cos(a-b))ln|(sin(x-a))/(cos(x-b))|+C`

B

`1/(cos(a-b))ln|(cos(x-a))/(sin(x-a))|+C`

C

`1/(sin(a-b))ln|(sin(x-a))/(cos(x-b))|+C`

D

`1/(sin(a+b))ln|(cos(x-a))/(sin(x-b))|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\sin(x-a) \cos(x-b)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{\sin(x-a) \cos(x-b)} \, dx \] To simplify the expression, we multiply and divide by \(\cos(b-a)\): \[ I = \int \frac{\cos(b-a)}{\sin(x-a) \cos(x-b) \cos(b-a)} \, dx \] ### Step 2: Use the Cosine Angle Difference Identity We can express \(\cos(b-a)\) using the cosine angle difference identity: \[ \cos(b-a) = \cos(x-a) \cos(x-b) + \sin(x-a) \sin(x-b) \] Thus, we rewrite the integral: \[ I = \int \frac{\cos(b-a)}{\sin(x-a) \cos(x-b)} \, dx = \int \frac{\cos(x-a) \cos(x-b) + \sin(x-a) \sin(x-b)}{\sin(x-a) \cos(x-b)} \, dx \] ### Step 3: Separate the Integral Now we can separate the integral into two parts: \[ I = \int \left( \frac{\cos(x-a)}{\sin(x-a)} + \frac{\sin(x-a)}{\cos(x-b)} \right) \, dx \] This simplifies to: \[ I = \int \cot(x-a) \, dx + \int \tan(x-b) \, dx \] ### Step 4: Integrate Each Part Now we can integrate each part: 1. The integral of \(\cot(x-a)\) is: \[ \int \cot(x-a) \, dx = \ln |\sin(x-a)| + C_1 \] 2. The integral of \(\tan(x-b)\) is: \[ \int \tan(x-b) \, dx = -\ln |\cos(x-b)| + C_2 \] ### Step 5: Combine the Results Combining these results, we have: \[ I = \ln |\sin(x-a)| - \ln |\cos(x-b)| + C \] Using the property of logarithms: \[ \ln a - \ln b = \ln \left(\frac{a}{b}\right) \] We can write: \[ I = \ln \left|\frac{\sin(x-a)}{\cos(x-b)}\right| + C \] ### Step 6: Final Result Finally, we can express the result in terms of \(\cos(b-a)\): \[ I = \frac{1}{\cos(b-a)} \ln \left|\frac{\sin(x-a)}{\cos(x-b)}\right| + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{1}{\cos(b-a)} \ln \left|\frac{\sin(x-a)}{\cos(x-b)}\right| + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-3|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-4|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Reduction Formulae|2 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int (dx)/(sin(x-a)sin(x-b)

int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx is equal to

Knowledge Check

  • int(dx)/( sin^(2)x cos^(2)x) is equal to

    A
    `tanx + cot x+C`
    B
    `( tanx + cot x )^(2) +C`
    C
    `tanx - cot x +C`
    D
    `( tan x -cot x) ^(2) + C`
  • Similar Questions

    Explore conceptually related problems

    int(1)/(sin^(2)x-4 cos^(2)x)dx

    l=int(sin2x)/(8sin^(2)x+17cos^(2)x)dx is equal to

    int(1)/(3+2 sin x +cos x)dx

    int _(-pi)^(pi) (sin^(4)x)/(sin^(2) x + cos^(4) x )dx is equal to

    int(1)/(1+3 sin ^(2)x)dx is equal to

    int(1)/(sin x - cos x +sqrt(2))dx equals

    int(1)/(cos x - sin x )dx is equal to