Home
Class 12
MATHS
The value of integral int1/[(x-3)^(3)(...

The value of integral
`int1/[(x-3)^(3)(x+2)^(5)]^(1//4)dx` is

A

`4/3(x-1)/(x+2)^(1//4)` dx is equal to

B

`sqrt(x)sqrt(1-x)-2sqrt(1-x)+cos^(-1)(sqrt(x))+C`

C

`sqrt(x)sqrt(1-x)+2sqrt(1-x)+cos^(-)(sqrt(x))+C`

D

`sqrt(x)sqrt(1-x)-2sqrt(1-x)-cos^(-1)sqrt(x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{\left[(x-3)^3 (x+2)^5\right]^{\frac{1}{4}}} \, dx, \] we can start by simplifying the expression inside the integral. ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ \int \frac{1}{(x-3)^{\frac{3}{4}} (x+2}^{\frac{5}{4}}) \, dx. \] ### Step 2: Multiply and Divide by \( (x+2)^{\frac{3}{4}} \) Next, we multiply and divide by \( (x+2)^{\frac{3}{4}} \): \[ \int \frac{(x+2)^{\frac{3}{4}}}{(x-3)^{\frac{3}{4}} (x+2)^{\frac{3}{4}} (x+2)^{\frac{5}{4}}} \, dx. \] This simplifies to: \[ \int \frac{(x+2)^{\frac{3}{4}}}{(x-3)^{\frac{3}{4}} (x+2)^{2}} \, dx. \] ### Step 3: Combine the Powers Now, we can combine the powers of \( (x+2) \): \[ \int \frac{(x+2)^{\frac{3}{4}}}{(x-3)^{\frac{3}{4}} (x+2)^{2}} \, dx = \int \frac{1}{(x-3)^{\frac{3}{4}} (x+2)^{\frac{5}{4}}} \, dx. \] ### Step 4: Substitution Let us make the substitution: \[ y = \frac{x-3}{x+2}. \] Differentiating both sides gives: \[ dy = \frac{(x+2)(1) - (x-3)(1)}{(x+2)^2} \, dx = \frac{5}{(x+2)^2} \, dx. \] Thus, we have: \[ dx = \frac{(x+2)^2}{5} \, dy. \] ### Step 5: Substitute Back into the Integral Substituting \( dx \) into the integral gives: \[ \int \frac{1}{y^{\frac{3}{4}}} \cdot \frac{(x+2)^2}{5} \, dy. \] ### Step 6: Simplifying the Integral Now, we can simplify the integral: \[ \frac{1}{5} \int y^{-\frac{3}{4}} (x+2)^2 \, dy. \] ### Step 7: Integrate Integrating \( y^{-\frac{3}{4}} \): \[ \frac{1}{5} \cdot \left( \frac{y^{\frac{1}{4}}}{\frac{1}{4}} \right) + C = \frac{4}{5} y^{\frac{1}{4}} + C. \] ### Step 8: Substitute Back for \( y \) Now substituting back for \( y \): \[ \frac{4}{5} \left( \frac{x-3}{x+2} \right)^{\frac{1}{4}} + C. \] ### Final Result Thus, the final answer for the integral is: \[ \frac{4}{5} \left( \frac{x-3}{x+2} \right)^{\frac{1}{4}} + C. \] ---

To solve the integral \[ \int \frac{1}{\left[(x-3)^3 (x+2)^5\right]^{\frac{1}{4}}} \, dx, \] we can start by simplifying the expression inside the integral. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-9|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-10|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-7|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/([(x-1)^3(x+2)^5]^(1/4))dx

Evaluate: int1/([(x-1)^3(x+2)^5]^(1/4))dx

Find the value of int(1)/[(x-1)^3(x+2)^5]^(1/4)dx

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral - int_(1/4)^(3/4)((pi)/(2)+sin^(-1)x)/(2cos^(-1)x+3sin^(-1)x+sin^(-1)(1-x)) dx is -

The value of the integral int_(0)^(1) (1)/((1+x^(2))^(3//2))dx is

The value of the integral int_-2^2(dx)/(x+1)^3 is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int _0^oo 1/(1+x^4)dx is

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to