Home
Class 12
MATHS
The value of int("ln"|x|)/(xsqrt(1+ln|x|...

The value of `int("ln"|x|)/(xsqrt(1+ln|x|)`dx equals:

A

`2/3sqrt((1+ln|x|)("ln|x|-2))+C`

B

`2/3sqrt((1+"ln"|x|)(ln|x|+2))+C`

C

`1/2sqrt((1+ln|x|)(ln|x|-2))+C`

D

`2sqrt(1+ln|x|(3ln|x|=2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\ln |x|}{x \sqrt{1 + \ln |x|}} \, dx\), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = 1 + \ln |x| \). Then, we differentiate both sides: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt \] Since \( t = 1 + \ln |x| \), we can express \(\ln |x|\) in terms of \(t\): \[ \ln |x| = t - 1 \] ### Step 2: Express \(x\) in terms of \(t\) From the substitution \(t = 1 + \ln |x|\), we can express \(x\) as: \[ \ln |x| = t - 1 \quad \Rightarrow \quad |x| = e^{t-1} \quad \Rightarrow \quad x = e^{t-1} \text{ (considering } x > 0\text{)} \] ### Step 3: Rewrite the integral Now we can rewrite the integral: \[ \int \frac{\ln |x|}{x \sqrt{1 + \ln |x|}} \, dx = \int \frac{t - 1}{e^{t-1} \sqrt{t}} \cdot e^{t-1} \, dt \] This simplifies to: \[ \int \frac{t - 1}{\sqrt{t}} \, dt \] ### Step 4: Split the integral Now we can split the integral: \[ \int \frac{t - 1}{\sqrt{t}} \, dt = \int \left( \frac{t}{\sqrt{t}} - \frac{1}{\sqrt{t}} \right) dt = \int \left( \sqrt{t} - t^{-1/2} \right) dt \] ### Step 5: Integrate term by term Now we integrate each term: 1. \(\int \sqrt{t} \, dt = \frac{t^{3/2}}{3/2} = \frac{2}{3} t^{3/2}\) 2. \(\int t^{-1/2} \, dt = 2 t^{1/2}\) Putting it all together: \[ \int \left( \sqrt{t} - t^{-1/2} \right) dt = \frac{2}{3} t^{3/2} - 2 t^{1/2} + C \] ### Step 6: Substitute back for \(t\) Now we substitute back \(t = 1 + \ln |x|\): \[ = \frac{2}{3} (1 + \ln |x|)^{3/2} - 2 (1 + \ln |x|)^{1/2} + C \] ### Final Answer Thus, the value of the integral is: \[ \int \frac{\ln |x|}{x \sqrt{1 + \ln |x|}} \, dx = \frac{2}{3} (1 + \ln |x|)^{3/2} - 2 (1 + \ln |x|)^{1/2} + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-8|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-9|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-6|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

The value of int(dx)/(xsqrt(1-x^(3))) is equal to

The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the constant of integration)

The value of int(x e^ln(sinx)-cosx)dx is equal to

The value of int x log x (log x - 1) dx is equal to

Evaluate: int(sin("ln"x))/(x) dx

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

The value of integral int_(1)^(e) (log x)^(3)dx , is

Write a value of int(log)_e x\ dx

The value int { ln(1+sinx)+xtan(pi/4-x/2)} dx is equal to (A) x ln(1+sinx)+C (B) ln(1+sinx)+C (C) -x ln(1+sinx)+C (D) ln(1-sinx)+C