Home
Class 12
MATHS
The value of int e^sqrtx/sqrtx(sqrtx + x...

The value of `int e^sqrtx/sqrtx(sqrtx + x) dx` is equal to

A

`2e^(sqrt(x))-x+1]+C`

B

`2e^(sqrt(x))[x-2sqrt(x)+1)]+C`

C

`2e^sqrt(x)[x-sqrt(x)+1]+C`

D

`2e^sqrt(x)(x+sqrt(x)+1)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{e^{\sqrt{x}}}{\sqrt{x}(\sqrt{x} + x)} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] Substituting these into the integral gives: \[ \int \frac{e^{t}}{t(t + t^2)} \cdot 2t \, dt \] ### Step 2: Simplifying the Integral The integral simplifies to: \[ \int \frac{2e^{t}}{t + t^2} \, dt = \int \frac{2e^{t}}{t(1 + t)} \, dt \] ### Step 3: Splitting the Fraction We can split the fraction: \[ \frac{2e^{t}}{t(1 + t)} = \frac{2e^{t}}{t} - \frac{2e^{t}}{1 + t} \] Thus, the integral becomes: \[ \int \left( \frac{2e^{t}}{t} - \frac{2e^{t}}{1 + t} \right) dt \] ### Step 4: Integrating Each Part Now we can integrate each part separately: 1. For \( \int \frac{2e^{t}}{t} \, dt \), we recognize this as a standard integral. 2. For \( \int \frac{2e^{t}}{1 + t} \, dt \), we can also recognize this as a standard integral. ### Step 5: Using Integration by Parts For the first integral: \[ \int \frac{2e^{t}}{t} \, dt = 2 \text{Ei}(t) + C_1 \] where \( \text{Ei}(t) \) is the exponential integral. For the second integral, we can use integration by parts: Let \( u = \frac{2}{1+t} \) and \( dv = e^{t} dt \). Then: \[ du = -\frac{2}{(1+t)^2} dt, \quad v = e^{t} \] Thus, we have: \[ \int \frac{2e^{t}}{1+t} dt = 2e^{t} \ln(1+t) - \int 2e^{t} \cdot \left(-\frac{2}{(1+t)^2}\right) dt \] ### Step 6: Final Integration Combining these results, we can express the integral in terms of \( t \): \[ \int \frac{e^{\sqrt{x}}}{\sqrt{x}(\sqrt{x} + x)} \, dx = 2\left( \text{Ei}(\sqrt{x}) - e^{\sqrt{x}} \ln(1+\sqrt{x}) \right) + C \] ### Step 7: Substitute Back Finally, substituting back \( t = \sqrt{x} \): \[ = 2\left( \text{Ei}(\sqrt{x}) - e^{\sqrt{x}} \ln(1+\sqrt{x}) \right) + C \] ### Final Answer Thus, the value of the integral is: \[ \int \frac{e^{\sqrt{x}}}{\sqrt{x}(\sqrt{x} + x)} \, dx = 2\left( \text{Ei}(\sqrt{x}) - e^{\sqrt{x}} \ln(1+\sqrt{x}) \right) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-12|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-13|9 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-10|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where, C is the constant of integration)

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

int (1)/(x+sqrtx) dx is equal to

int e^(sqrtx) dx

int (a^sqrtx)/(sqrtx) dx equals

int (1/sqrtx-sqrtx)dx

Find int sqrtx/sqrt(a^3-x^3) dx

Evaluate : int( sqrtx)/sqrt( a^(3) - x^(3) ) dx

The value of the integral int_3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

"int5sqrtx dx