Home
Class 12
MATHS
If I=int2/x(x^("lnx"))(nx)^(3)dx=Ax^("ln...

If `I=int2/x(x^("lnx"))(nx)^(3)dx=Ax^("lnx"^(2))-Bx^("lnx")+C`, then `A/B` is equal to:

A

1

B

`-1`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{2}{x} \cdot x^{\ln x} \cdot (\ln x)^3 \, dx \) and find the ratio \( \frac{A}{B} \) where \( I = A x^{(\ln x)^2} - B x^{\ln x} + C \), we will proceed step by step. ### Step 1: Change of Variables Let \( y = \ln x \). Then, we have: \[ x = e^y \quad \text{and} \quad dx = e^y \, dy. \] Substituting these into the integral gives: \[ I = \int \frac{2}{e^y} \cdot (e^y)^{y} \cdot y^3 \cdot e^y \, dy = \int 2 e^{y^2} y^3 \, dy. \] ### Step 2: Simplifying the Integral Now, we can rewrite the integral as: \[ I = 2 \int y^3 e^{y^2} \, dy. \] ### Step 3: Another Change of Variables Let \( t = y^2 \). Then, \( dt = 2y \, dy \) or \( dy = \frac{dt}{2\sqrt{t}} \). The integral becomes: \[ I = 2 \int y^3 e^{y^2} \, dy = 2 \int (t^{3/2}) e^t \cdot \frac{dt}{2\sqrt{t}} = \int t e^t \, dt. \] ### Step 4: Integration by Parts Now we will use integration by parts where: - Let \( u = t \) and \( dv = e^t \, dt \). - Then, \( du = dt \) and \( v = e^t \). Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int t e^t \, dt = t e^t - \int e^t \, dt = t e^t - e^t + C. \] ### Step 5: Back Substituting Now substituting back \( t = y^2 \) and \( y = \ln x \): \[ I = y^2 e^{y^2} - e^{y^2} + C = (\ln x)^2 x^{\ln x} - x^{\ln x} + C. \] ### Step 6: Comparing Coefficients From the expression \( I = A x^{(\ln x)^2} - B x^{\ln x} + C \), we can identify: - \( A = 1 \) - \( B = 1 \) ### Step 7: Finding \( \frac{A}{B} \) Thus, we have: \[ \frac{A}{B} = \frac{1}{1} = 1. \] ### Final Answer The value of \( \frac{A}{B} \) is \( 1 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-13|9 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SINGLE AND DOUBLE VALUE INTEGER TYPE|16 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-11|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

If y=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

If int(3x ^(3)-17)e^(2x)dx={Ax^(3)+Bx^(2)+Cx+D}e^(2x)+k then

int x ^(x)((ln x )^(2) +lnx+1/x) dx is equal to:

If int(lnx)/(x^(3))dx=-(lnx)/(ax^(2))-(1)/(bx^(2))+c then the value of a+b must be _______

If I_(n)=(d^(n))/(dx^(n))(x^(n)lnx) , then the value of (1)/(50)(I_(7)-7I_(6)) is equal to

int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

int(x^(2))/((a+bx^(2))^(5//2))dx is equal to

If I=int((lnx)^(5))/(sqrt(x^(2)+x^(2)(lnx)^(3)))dx=ksqrt((lnx)^(3)+1)((lnx)^(3)-2)+c (where c is the constant of integration), then 9k is equal to

Evaluate: int[ln(lnx)+1/(lnx)^(2)] dx

int {((lnx-1))/(1+(lnx)^2)}^2 dx is equal to