Home
Class 12
MATHS
Solve ((x-5)^(2)(x+2)^(3)(x-4))/((x-3)^(...

Solve `((x-5)^(2)(x+2)^(3)(x-4))/((x-3)^(4))le0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ \frac{(x-5)^{2}(x+2)^{3}(x-4)}{(x-3)^{4}} \leq 0, \] we will follow these steps: ### Step 1: Identify the critical points The critical points occur when the numerator is zero or the denominator is zero. - The numerator \((x-5)^{2}(x+2)^{3}(x-4) = 0\) gives us the points: - \(x = 5\) (double root, even power) - \(x = -2\) (triple root, odd power) - \(x = 4\) (single root, odd power) - The denominator \((x-3)^{4} = 0\) gives us the point: - \(x = 3\) (even power, not defined) Thus, the critical points are \(x = -2, 3, 4, 5\). ### Step 2: Plot the critical points on a number line We will mark the critical points on a number line: ``` ---|---|---|---|---|---|---|---|---|--- -2 3 4 5 ``` ### Step 3: Determine the sign of the expression in each interval We will analyze the sign of the expression in the intervals formed by these critical points: 1. **Interval \((-∞, -2)\)**: - Choose \(x = -3\): \[ \frac{(-3-5)^{2}(-3+2)^{3}(-3-4)}{(-3-3)^{4}} = \frac{(8)^{2}(-1)^{3}(-7)}{(6)^{4}} > 0 \] 2. **Interval \((-2, 3)\)**: - Choose \(x = 0\): \[ \frac{(0-5)^{2}(0+2)^{3}(0-4)}{(0-3)^{4}} = \frac{(5)^{2}(2)^{3}(-4)}{(3)^{4}} < 0 \] 3. **Interval \((3, 4)\)**: - Choose \(x = 3.5\): \[ \frac{(3.5-5)^{2}(3.5+2)^{3}(3.5-4)}{(3.5-3)^{4}} = \frac{(1.5)^{2}(5.5)^{3}(-0.5)}{(0.5)^{4}} < 0 \] 4. **Interval \((4, 5)\)**: - Choose \(x = 4.5\): \[ \frac{(4.5-5)^{2}(4.5+2)^{3}(4.5-4)}{(4.5-3)^{4}} = \frac{(0.5)^{2}(6.5)^{3}(0.5)}{(1.5)^{4}} > 0 \] 5. **Interval \((5, ∞)\)**: - Choose \(x = 6\): \[ \frac{(6-5)^{2}(6+2)^{3}(6-4)}{(6-3)^{4}} = \frac{(1)^{2}(8)^{3}(2)}{(3)^{4}} > 0 \] ### Step 4: Compile the results The signs in the intervals are as follows: - \((-∞, -2)\): Positive - \((-2, 3)\): Negative - \((3, 4)\): Negative - \((4, 5)\): Positive - \((5, ∞)\): Positive ### Step 5: Include critical points - At \(x = -2\), the expression is \(0\) (included). - At \(x = 3\), the expression is undefined (not included). - At \(x = 4\), the expression is \(0\) (included). - At \(x = 5\), the expression is \(0\) (included). ### Final Solution The solution to the inequality is: \[ x \in [-2, 3) \cup [4, 5]. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0

Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0

Solve ((x-3)(x+5)(x-7))/(|x-4|(x+6))le0

Let 'a' be an integer. If there are 10 inegers satisfying the ((x-a)^(2)(x-2a))/((x-3a)(x-4a))le0 then

Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.

Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.

The number of integral solution of (x^(2)(3x-4)^(3)(x-2)^(4))/(In(2x-1)(x-5)^(5)(2x-7)^(6))le 0 is :

|(x-3)/(x^(2)-4)|le 1.

" Solve : (3x)/(4)-(2x+5)/(3)=(5)/(2)

Let f(x)=((x-1)^(3)(x+2)^(4)(x-3)^(5)(x+6))/(x^(2)(x-7)^(3)) . Solve the following inequality f(x)le0