Home
Class 12
MATHS
Let S (n ) = sum ( k =0) ^(n) (1)/( sqr...

Let ` S _(n ) = sum _( k =0) ^(n) (1)/( sqrt ( k +1) + sqrt k)` What is the value of `sum _( n =1) ^( 99) (1)/( S _(n ) + S _( n -1)) ?=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will go through the steps systematically. ### Step 1: Define the sequence \( S_n \) We are given: \[ S_n = \sum_{k=0}^{n} \frac{1}{\sqrt{k+1} + \sqrt{k}} \] ### Step 2: Rationalize the denominator To simplify \( S_n \), we can rationalize the denominator: \[ \frac{1}{\sqrt{k+1} + \sqrt{k}} \cdot \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}} = \frac{\sqrt{k+1} - \sqrt{k}}{(\sqrt{k+1})^2 - (\sqrt{k})^2} \] Using the identity \( a^2 - b^2 = (a+b)(a-b) \): \[ = \frac{\sqrt{k+1} - \sqrt{k}}{(k+1) - k} = \sqrt{k+1} - \sqrt{k} \] ### Step 3: Rewrite \( S_n \) Now, substituting back into the sum: \[ S_n = \sum_{k=0}^{n} (\sqrt{k+1} - \sqrt{k}) \] ### Step 4: Evaluate the telescoping series This is a telescoping series. When we expand it: \[ S_n = (\sqrt{1} - \sqrt{0}) + (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + \ldots + (\sqrt{n+1} - \sqrt{n}) \] Most terms cancel out: \[ S_n = \sqrt{n+1} - \sqrt{0} = \sqrt{n+1} \] ### Step 5: Find \( S_n + S_{n-1} \) Now, we need to find \( S_n + S_{n-1} \): \[ S_{n-1} = \sqrt{n} \] Thus, \[ S_n + S_{n-1} = \sqrt{n+1} + \sqrt{n} \] ### Step 6: Set up the main summation We need to evaluate: \[ \sum_{n=1}^{99} \frac{1}{S_n + S_{n-1}} = \sum_{n=1}^{99} \frac{1}{\sqrt{n+1} + \sqrt{n}} \] ### Step 7: Rationalize the denominator again We can rationalize the denominator: \[ \frac{1}{\sqrt{n+1} + \sqrt{n}} \cdot \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+1} - \sqrt{n}} = \frac{\sqrt{n+1} - \sqrt{n}}{(\sqrt{n+1})^2 - (\sqrt{n})^2} \] This simplifies to: \[ = \frac{\sqrt{n+1} - \sqrt{n}}{(n+1) - n} = \sqrt{n+1} - \sqrt{n} \] ### Step 8: Substitute back into the summation Now substituting back into the summation: \[ \sum_{n=1}^{99} (\sqrt{n+1} - \sqrt{n}) \] ### Step 9: Evaluate the telescoping series This is again a telescoping series: \[ = (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + \ldots + (\sqrt{100} - \sqrt{99}) \] Most terms cancel out, leaving us with: \[ = \sqrt{100} - \sqrt{1} = 10 - 1 = 9 \] ### Final Answer Thus, the final value of the summation is: \[ \boxed{9} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -1 PART -II RMO|1 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos

Similar Questions

Explore conceptually related problems

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of integral sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx is

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

If a_(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value of sum_(n=1)^(20) (1)/(a^(n)) is

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

If the sum sum_(n=1)^10 sum_(m=1)^10 tan^(-1) (m/n) = k pi , find the value of k