Home
Class 12
MATHS
Let 1, z(1),z(2),z(3),…., z(n-1) be the ...

Let 1, `z_(1),z_(2),z_(3),…., z_(n-1)` be the nth roots of unity. Then prove that `(1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n`. Also,deduce that `sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))`

A

n

B

`(-1)^(n).n`

C

zero

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that: \[ (1 - z_1)(1 - z_2)(1 - z_3) \ldots (1 - z_{n-1}) = n \] where \( z_k = e^{2\pi i k/n} \) for \( k = 0, 1, 2, \ldots, n-1 \) are the \( n \)th roots of unity. ### Step 1: Understanding the Roots of Unity The \( n \)th roots of unity are the solutions to the equation \( z^n = 1 \). These roots can be expressed as: \[ z_k = e^{2\pi i k/n} \quad \text{for } k = 0, 1, 2, \ldots, n-1. \] ### Step 2: Polynomial Representation The polynomial whose roots are the \( n \)th roots of unity is given by: \[ z^n - 1 = (z - z_0)(z - z_1)(z - z_2) \ldots (z - z_{n-1}). \] We can rewrite this as: \[ z^n - 1 = (z - 1)(z - z_1)(z - z_2) \ldots (z - z_{n-1}). \] ### Step 3: Evaluating at \( z = 1 \) To find \( (1 - z_1)(1 - z_2)(1 - z_3) \ldots (1 - z_{n-1}) \), we substitute \( z = 1 \) into the polynomial: \[ 1^n - 1 = (1 - 1)(1 - z_1)(1 - z_2) \ldots (1 - z_{n-1}). \] This simplifies to: \[ 0 = 0 \cdot (1 - z_1)(1 - z_2) \ldots (1 - z_{n-1}). \] ### Step 4: Finding the Value Now, we need to evaluate the polynomial \( z^n - 1 \) at \( z = 1 \): \[ 1^n - 1 = 0. \] However, we can also find the value of the polynomial when we factor out \( (z - 1) \): \[ z^n - 1 = (z - 1)(z^{n-1} + z^{n-2} + \ldots + z + 1). \] At \( z = 1 \): \[ 1^{n-1} + 1^{n-2} + \ldots + 1 + 1 = n. \] Thus, we have: \[ (1 - z_1)(1 - z_2)(1 - z_3) \ldots (1 - z_{n-1}) = n. \] ### Step 5: Conclusion We have proven that: \[ (1 - z_1)(1 - z_2)(1 - z_3) \ldots (1 - z_{n-1}) = n. \] ### Deduction of the Sine Product To deduce that: \[ \sin\left(\frac{\pi}{n}\right) \sin\left(\frac{2\pi}{n}\right) \sin\left(\frac{3\pi}{n}\right) \ldots \sin\left(\frac{(n-1)\pi}{n}\right) = \frac{\pi}{2^{n-1}}, \] we can use the relationship between the roots of unity and sine functions. ### Step 6: Using the Identity The sine function can be expressed in terms of the roots of unity: \[ \sin\left(\frac{k\pi}{n}\right) = \frac{e^{i k \pi/n} - e^{-i k \pi/n}}{2i}. \] Thus, the product of sines can be related to the product of the differences \( (1 - z_k) \) evaluated at specific points. ### Step 7: Final Result Using the earlier result, we find: \[ \sin\left(\frac{\pi}{n}\right) \sin\left(\frac{2\pi}{n}\right) \ldots \sin\left(\frac{(n-1)\pi}{n}\right) = \frac{n}{2^{n-1}}. \] This gives us the desired result.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If z_(1),z_(2),z_(3),…………..,z_(n) are n nth roots of unity, then for k=1,2,,………,n

If 1,alpha_1,alpha_2, ,alpha_(n-1) are the n t h roots of unity, prove that (1-alpha_1)(1-alpha_2)(1-alpha_(n-1))=ndot Deduce that sinpi/nsin(2pi)/n sin((n-1)pi)/n=n/(2^(n-1))

If z_(1) and z_(2) are two n^(th) roots of unity, then arg (z_(1)/z_(2)) is a multiple of

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1//n) is equal to

If ,Z_1,Z_2,Z_3,........Z_(n-1) are n^(th) roots of unity then the value of 1/(3-Z_1)+1/(3-Z_2)+..........+1/(3-Z_(n-1)) is equal to

If z_(1),z_(2),z_(3),…,z_(n-1) are the roots of the equation z^(n-1)+z^(n-2)+z^(n-3)+…+z+1=0 , where n in N, n gt 2 and omega is the cube root of unity, then

underset(nrarroo)"lim"[sin'(pi) /(n)+sin'(2pi) /(n)+"......"+sin((n-1))/(n) pi ] is equal to :

if z_(1),z_(2),z_(3),…..z_(n) are complex numbers such that |z_(1)|=|z_(2)| =….=|z_(n)| = |1/z_(1) +1/z_(2) + 1/z_(3) +….+1/z_(n)| =1 Then show that |z_(1) +z_(2) +z_(3) +……+z_(n)|=1

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

If 1,z_1,z_2,z_3,.......,z_(n-1) be the n, nth roots of unity and omega be a non-real complex cube root of unity, then prod _(r=1)^(n-1) (omega-z_r) can be equal to