Home
Class 12
MATHS
If y=sin^(-1)(cos x)+cos^(-1)(sin x), pr...

If `y=sin^(-1)(cos x)+cos^(-1)(sin x)`, prove that `(dy)/(dx)=-2`

A

`-2`

B

`2`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{dy}{dx} = -2\) for the given function \(y = \sin^{-1}(\cos x) + \cos^{-1}(\sin x)\), we can follow these steps: ### Step 1: Rewrite the function We start with the given function: \[ y = \sin^{-1}(\cos x) + \cos^{-1}(\sin x) \] ### Step 2: Use the identity for inverse functions We know that: \[ \sin^{-1}(a) + \cos^{-1}(a) = \frac{\pi}{2} \] for any \(a\) in the domain. However, we can also express \(\cos^{-1}(\sin x)\) in terms of \(\sin^{-1}(\cos x)\) as follows: \[ \cos^{-1}(\sin x) = \frac{\pi}{2} - \sin^{-1}(\sin x) \] Thus, we can rewrite \(y\) as: \[ y = \sin^{-1}(\cos x) + \left(\frac{\pi}{2} - \sin^{-1}(\sin x)\right) \] ### Step 3: Simplify the expression Now, substituting this back into our equation for \(y\): \[ y = \sin^{-1}(\cos x) + \frac{\pi}{2} - \sin^{-1}(\sin x) \] Since \(\sin^{-1}(\sin x) = x\) (for \(x\) in the range \([- \frac{\pi}{2}, \frac{\pi}{2}]\)), we can simplify further: \[ y = \sin^{-1}(\cos x) + \frac{\pi}{2} - x \] ### Step 4: Differentiate \(y\) with respect to \(x\) Now, we differentiate \(y\): \[ \frac{dy}{dx} = \frac{d}{dx} \left(\sin^{-1}(\cos x) + \frac{\pi}{2} - x\right) \] The derivative of \(\frac{\pi}{2}\) is \(0\), and the derivative of \(-x\) is \(-1\). For \(\sin^{-1}(\cos x)\), we use the chain rule: \[ \frac{d}{dx}(\sin^{-1}(\cos x)) = \frac{1}{\sqrt{1 - (\cos x)^2}} \cdot (-\sin x) = -\frac{\sin x}{\sqrt{1 - \cos^2 x}} = -\frac{\sin x}{\sin x} = -1 \] Thus, we have: \[ \frac{dy}{dx} = -1 - 1 = -2 \] ### Conclusion Therefore, we have proved that: \[ \frac{dy}{dx} = -2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If y=e^("sin"^(-1)x)andz=e^(-"cos"^(-1)x) , prove that dy/(dz)=e^(pi//2) .

If y=x\ sin^(-1)x+sqrt(1-x^2) , prove that (dy)/(dx)=sin^(-1)x

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0

If x=a^(sin^-1 t) ,\ y=a^(cos^-1t) ,\ show that (dy)/(dx)=-y/x

If y= y=sqrt((1-sin 2x )/(1+sin 2 x)) prove that (dy)/(dx)+sec^2(pi/4-x)=0.

If y=sin^(-1)x+cos^(-1)x ,\ find (dy)/(dx) .

If y=(sin x)/(1+cos x) then prove that (dy)/(dx)=(1)/(1+cosx)

If y= sin^(-1)(x/(sqrt(1+x^2))) + cos^(-1)(1/(sqrt(1+x^2))) , prove that (dy)/(dx)=(2x)/(1+x^2) .

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)