Home
Class 12
MATHS
If x^(2)+y^(2)+siny=4 then the value of ...

If `x^(2)+y^(2)+siny=4` then the value of `|(d^(2)y)/(dx^(2))|` at point (-2,0) is ……………..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\frac{d^2y}{dx^2}|\) at the point \((-2, 0)\) given the equation: \[ x^2 + y^2 + \sin y = 4 \] ### Step 1: Differentiate the equation with respect to \(x\) We start by differentiating both sides of the equation with respect to \(x\): \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) + \frac{d}{dx}(\sin y) = \frac{d}{dx}(4) \] This gives us: \[ 2x + 2y \frac{dy}{dx} + \cos y \frac{dy}{dx} = 0 \] ### Step 2: Rearrange the equation We can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ 2x + (2y + \cos y) \frac{dy}{dx} = 0 \] This leads to: \[ (2y + \cos y) \frac{dy}{dx} = -2x \] Thus, \[ \frac{dy}{dx} = \frac{-2x}{2y + \cos y} \] ### Step 3: Evaluate \(\frac{dy}{dx}\) at the point \((-2, 0)\) Now we substitute \(x = -2\) and \(y = 0\): \[ \frac{dy}{dx} = \frac{-2(-2)}{2(0) + \cos(0)} = \frac{4}{1} = 4 \] ### Step 4: Differentiate again to find \(\frac{d^2y}{dx^2}\) Next, we differentiate the equation \(2x + (2y + \cos y) \frac{dy}{dx} = 0\) again with respect to \(x\): Using the product rule on \((2y + \cos y) \frac{dy}{dx}\): \[ \frac{d}{dx}(2x) + \frac{d}{dx}((2y + \cos y) \frac{dy}{dx}) = 0 \] This gives: \[ 2 + \left(2 \frac{dy}{dx} + (2y + \cos y) \frac{d^2y}{dx^2} - \sin y \left(\frac{dy}{dx}\right)^2\right) = 0 \] ### Step 5: Substitute the values at the point \((-2, 0)\) Now substituting \(x = -2\), \(y = 0\), and \(\frac{dy}{dx} = 4\): \[ 2 + \left(2(4) + (2(0) + \cos(0)) \frac{d^2y}{dx^2} - \sin(0)(4^2)\right) = 0 \] This simplifies to: \[ 2 + (8 + 1 \cdot \frac{d^2y}{dx^2} - 0) = 0 \] So we have: \[ 2 + 8 + \frac{d^2y}{dx^2} = 0 \] ### Step 6: Solve for \(\frac{d^2y}{dx^2}\) This leads to: \[ \frac{d^2y}{dx^2} = -10 \] ### Step 7: Find the absolute value Finally, we need the absolute value: \[ |\frac{d^2y}{dx^2}| = |-10| = 10 \] ### Final Answer Thus, the value of \(|\frac{d^2y}{dx^2}|\) at the point \((-2, 0)\) is: \[ \boxed{10} \]

To solve the problem, we need to find the value of \(|\frac{d^2y}{dx^2}|\) at the point \((-2, 0)\) given the equation: \[ x^2 + y^2 + \sin y = 4 \] ### Step 1: Differentiate the equation with respect to \(x\) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise MATHEMATICS (Section-2)|5 Videos

Similar Questions

Explore conceptually related problems

If x ^ 2 + y^ 2 + sin y = 4 , then the value of | (d^ 2 y ) /( dx ^ 2 ) | at point ( -2, 0 ) is …..

If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

If x = 3 tant and y = 3 sec t, then the value of (d^2y)/(dx^2)" at" t=pi/4 is

If y=A sin(omegat-kx), then the value of (d^2y)/(dt^2)/(d^2y)/(dx^2)

If y ^(2) =3 cos ^(2)x+ 2 sin ^(2)x, then the value of y ^(4) +y^(3) (d^(2)y)/(dx ^(2)) is

If (y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0, then the value of xysqrt(y^(2)-x^(2)), is

If x=a(cost+tsint) and y=a(sint-tcost), then find the value of (d^2y)/(dx^2) at t=pi/4

If x=at^2,y=2 at then find (d^2y)/(dx^2) .

If y=(x-x^2) , then find (d^2y)/(dx^2) .