Home
Class 12
MATHS
lim(x to 0) ((2^x +3^x + 6^x )/3)^(3//x)...

`lim_(x to 0) ((2^x +3^x + 6^x )/3)^(3//x)` is equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left(\frac{2^x + 3^x + 6^x}{3}\right)^{\frac{3}{x}} \), we can follow these steps: ### Step 1: Rewrite the limit expression We start with the limit expression: \[ L = \lim_{x \to 0} \left(\frac{2^x + 3^x + 6^x}{3}\right)^{\frac{3}{x}} \] ### Step 2: Identify the form of the limit As \( x \to 0 \), \( 2^x \to 1 \), \( 3^x \to 1 \), and \( 6^x \to 1 \). Therefore, the expression inside the limit approaches: \[ \frac{1 + 1 + 1}{3} = 1 \] Thus, we have the form \( 1^{\infty} \). ### Step 3: Use the exponential limit property For limits of the form \( 1^{\infty} \), we can rewrite it using the exponential function: \[ L = e^{\lim_{x \to 0} \left(\frac{2^x + 3^x + 6^x}{3} - 1\right) \cdot \frac{3}{x}} \] ### Step 4: Simplify the expression inside the limit We need to simplify \( \frac{2^x + 3^x + 6^x}{3} - 1 \): \[ \frac{2^x + 3^x + 6^x - 3}{3} \] As \( x \to 0 \), we can use the Taylor expansion for \( a^x \) around \( x = 0 \): \[ a^x \approx 1 + x \ln a \] Thus, \[ 2^x \approx 1 + x \ln 2, \quad 3^x \approx 1 + x \ln 3, \quad 6^x \approx 1 + x \ln 6 \] Adding these up: \[ 2^x + 3^x + 6^x \approx 3 + x (\ln 2 + \ln 3 + \ln 6) \] So, \[ \frac{2^x + 3^x + 6^x - 3}{3} \approx \frac{x (\ln 2 + \ln 3 + \ln 6)}{3} \] ### Step 5: Substitute back into the limit Now substituting back, we have: \[ L = e^{\lim_{x \to 0} \frac{x (\ln 2 + \ln 3 + \ln 6)}{3} \cdot \frac{3}{x}} = e^{\ln 2 + \ln 3 + \ln 6} \] ### Step 6: Simplify the exponent Using the property of logarithms: \[ \ln 2 + \ln 3 + \ln 6 = \ln(2 \cdot 3 \cdot 6) = \ln 36 \] Thus, \[ L = e^{\ln 36} = 36 \] ### Final Answer The limit is: \[ \boxed{36} \]

To solve the limit \( \lim_{x \to 0} \left(\frac{2^x + 3^x + 6^x}{3}\right)^{\frac{3}{x}} \), we can follow these steps: ### Step 1: Rewrite the limit expression We start with the limit expression: \[ L = \lim_{x \to 0} \left(\frac{2^x + 3^x + 6^x}{3}\right)^{\frac{3}{x}} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise MATHEMATICS (Section-2)|5 Videos
  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

lim_(x to oo) ((x^(2)+ 5x+3)/(x^(2)+x+3))^(x) is equal to

lim_(x to 0) (2x)/(tan3x)=?

lim_(xrarr0) ((3x^2 + 2)/ (7x^2 +2))^(1/x^2) is equal to

lim_(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

lim_(x to 3) (3x + 5) is equal to

lim_(x to 0) (sin x + cos 3x)^(2//x) =

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to: