Home
Class 12
MATHS
If 3^(x)+2^(2x) ge 5^(x), then the solut...

If `3^(x)+2^(2x) ge 5^(x)`, then the solution set for x, is

A

`(-oo,2]`

B

`[2,oo)`

C

`[0,2]`

D

{2}

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 3^x + 2^{2x} \geq 5^x \), we will follow these steps: ### Step 1: Rewrite the inequality We start with the given inequality: \[ 3^x + 2^{2x} \geq 5^x \] We can rewrite \( 2^{2x} \) as \( (2^x)^2 \): \[ 3^x + (2^x)^2 \geq 5^x \] ### Step 2: Substitute \( y = 2^x \) Let \( y = 2^x \). Then \( 3^x = \left(\frac{3}{2}\right)^x y \) and \( 5^x = \left(\frac{5}{2}\right)^x y \). The inequality becomes: \[ \left(\frac{3}{2}\right)^x y + y^2 \geq \left(\frac{5}{2}\right)^x y \] ### Step 3: Rearranging the inequality Rearranging gives us: \[ y^2 + \left(\frac{3}{2}\right)^x y - \left(\frac{5}{2}\right)^x y \geq 0 \] Factoring out \( y \): \[ y \left(y + \left(\frac{3}{2}\right)^x - \left(\frac{5}{2}\right)^x\right) \geq 0 \] ### Step 4: Analyzing the factors 1. The term \( y \) (which is \( 2^x \)) is always positive for all real \( x \). 2. We need to analyze the second factor: \[ y + \left(\frac{3}{2}\right)^x - \left(\frac{5}{2}\right)^x \geq 0 \] ### Step 5: Finding critical points To find when the second factor is zero, we can set: \[ \left(\frac{3}{2}\right)^x = \left(\frac{5}{2}\right)^x \] Taking logarithms gives: \[ x \log\left(\frac{3}{2}\right) = x \log\left(\frac{5}{2}\right) \] This equality holds when \( x = 0 \). ### Step 6: Testing intervals Now we will test intervals around the critical point \( x = 2 \): - For \( x < 2 \): Choose \( x = 1 \): \[ 3^1 + 2^{2 \cdot 1} = 3 + 4 = 7 \quad \text{and} \quad 5^1 = 5 \quad \Rightarrow \quad 7 \geq 5 \quad \text{(True)} \] - For \( x = 2 \): \[ 3^2 + 2^{2 \cdot 2} = 9 + 16 = 25 \quad \text{and} \quad 5^2 = 25 \quad \Rightarrow \quad 25 \geq 25 \quad \text{(True)} \] - For \( x > 2 \): Choose \( x = 3 \): \[ 3^3 + 2^{2 \cdot 3} = 27 + 64 = 91 \quad \text{and} \quad 5^3 = 125 \quad \Rightarrow \quad 91 < 125 \quad \text{(False)} \] ### Conclusion The inequality holds for \( x \leq 2 \). Therefore, the solution set is: \[ x \in (-\infty, 2] \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MISCELLANEOUS EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos

Similar Questions

Explore conceptually related problems

If 5^x+(2sqrt(3))^(2x)geq1 3^x then the solution set for

If 3^(x/2) + 2^x > 25 then the solution set is

Knowledge Check

  • If 1/(x-1) ge 2 , then the solution set is

    A
    A. `(1, 3/2]`
    B
    B. `[1,3/2]`
    C
    C. `( 1, 3/2)`
    D
    D. `( - oo , -3] cup [1/2 , oo)`
  • If 2 le 2x- 3 le 5, x in I , then the solution set of x on the number line is:

    A
    B
    C
    D
  • If 2x- 5 le 5x+ 4 le 11 and x is a natural number (N), then the solution set of x is

    A
    {1}
    B
    `{-3, -2, -1, 0,1}`
    C
    `{-2, -1, 0,1}`
    D
    `{-2, -1, 0}`
  • Similar Questions

    Explore conceptually related problems

    If (0.2)^((2x-3)/(x-2))gt 5 then complete solution set of values of x is

    If (x)/(2)- 5 le (x)/(3)- 4, x in R , then the solution set of x on the number line is:

    If 2x- 3 le x+1 le 4x+ 7, x in I (integers), then the solution set of x is

    If -5 lt 2x -3 le x+2, x in R , then the solution set of x on the number line is

    If 2x- 5 le 5x+4 lt 29 and x is an integer, then the solution set of x is