Home
Class 12
MATHS
Statement -1: if -1lexle1 then sin^(-1)(...

Statement -1: if `-1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x` Statement-2: If `-1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))`

A

Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

To solve the problem, we need to analyze both statements given in the question and determine their validity. ### Step 1: Analyze Statement 1 **Statement 1:** If \(-1 \leq x \leq 1\), then \(\sin^{-1}(-x) = -\sin^{-1}(x)\) and \(\cos^{-1}(-x) = \pi - \cos^{-1}(x)\). 1. **For \(\sin^{-1}(-x)\):** - The sine function is an odd function, meaning \(\sin(-y) = -\sin(y)\). - Therefore, \(\sin^{-1}(-x) = -\sin^{-1}(x)\) holds true for all \(x\) in the interval \([-1, 1]\). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

Sove 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

Solve sin^(-1)(x^(2)-2x+1)+cos^(-1)(x^(2)-x)=(pi)/2

y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqrt(1+x^2)), Find dy/dx

Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2) .

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to