Home
Class 12
MATHS
The value of the integral int(-10)^(0) (...

The value of the integral `int_(-10)^(0) (|(2|x|)/([x]-3x)|)/(((2|x|)/(3x-[x])))dx` where [.] denotes GIF

A

`(28)/(3)`

B

0

C

10

D

-10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-10}^{0} \frac{\left|\frac{2|x|}{[x] - 3x}\right|}{\left(\frac{2|x|}{3x - [x]}\right)} \, dx \] where \([x]\) denotes the greatest integer function (GIF), we will break the integral into segments based on the behavior of the GIF and the absolute value function. ### Step 1: Identify the intervals for integration The greatest integer function \([x]\) takes on integer values. For \(x\) in the interval \([-10, 0)\), the values of \([x]\) will be \(-10, -9, -8, \ldots, -1\). We will break the integral into intervals: \[ I = \int_{-10}^{-9} + \int_{-9}^{-8} + \int_{-8}^{-7} + \ldots + \int_{-1}^{0} \] ### Step 2: Evaluate the integral on each interval For each interval \([-n-1, -n)\) where \(n = 0, 1, 2, \ldots, 9\), we can calculate the integral separately. #### Interval \([-1, 0)\): In this interval, \([x] = -1\). Therefore, we have: \[ I_1 = \int_{-1}^{0} \frac{\left|\frac{2|x|}{-1 - 3x}\right|}{\left(\frac{2|x|}{3x + 1}\right)} \, dx \] Since \(x\) is negative, \(|x| = -x\). Thus, we can simplify: \[ I_1 = \int_{-1}^{0} \frac{\left|\frac{-2x}{-1 - 3x}\right|}{\left(\frac{-2x}{3x + 1}\right)} \, dx = \int_{-1}^{0} \frac{\frac{2x}{1 + 3x}}{\frac{-2x}{3x + 1}} \, dx = \int_{-1}^{0} \frac{2x(3x + 1)}{-2x(1 + 3x)} \, dx \] This simplifies to: \[ I_1 = \int_{-1}^{0} -1 \, dx = -\left[x\right]_{-1}^{0} = -[0 - (-1)] = -1 \] #### Interval \([-2, -1)\): In this interval, \([x] = -2\): \[ I_2 = \int_{-2}^{-1} \frac{\left|\frac{2|x|}{-2 - 3x}\right|}{\left(\frac{2|x|}{3x + 2}\right)} \, dx \] Following similar steps as above, we find: \[ I_2 = \int_{-2}^{-1} 1 \, dx = [x]_{-2}^{-1} = -1 - (-2) = 1 \] #### Continuing this pattern: For each interval \([-n-1, -n)\), where \(n = 0, 1, 2, \ldots, 9\), we find that: - For odd \(n\) (like \([-1, 0)\), \([-3, -2)\), etc.), the integral evaluates to \(-1\). - For even \(n\) (like \([-2, -1)\), \([-4, -3)\), etc.), the integral evaluates to \(1\). ### Step 3: Sum the contributions We have 10 intervals from \([-10, 0)\): - Odd intervals contribute \(-1\): 5 intervals (from \([-1, 0)\), \([-3, -2)\), \([-5, -4)\), \([-7, -6)\), \([-9, -8)\)). - Even intervals contribute \(1\): 5 intervals (from \([-2, -1)\), \([-4, -3)\), \([-6, -5)\), \([-8, -7)\), \([-10, -9)\)). Thus, the total contribution is: \[ I = 5(-1) + 5(1) = -5 + 5 = 0 \] ### Final Answer The value of the integral is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_-2^2(dx)/(x+1)^3 is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the definite integral int _(0) ^(10) ((x-5) +(x-5)^(2) +(c-5)^(3)) dx is:

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of the integral int_(0)^(8)(x^(2))/(x^(2)+8x+32) dx is equal to

The value of the integral int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is