Home
Class 12
MATHS
int(-pi//2)^(pi//2) sin^(2)x cos^(2) x(s...

`int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=`

A

`2//15`

B

`4//15`

C

`2//15`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (\sin x \cos x) \, dx, \] we will use the property of even and odd functions. ### Step 1: Identify the function Let \[ f(x) = \sin^2 x \cos^2 x (\sin x \cos x). \] ### Step 2: Check if the function is odd or even To determine if \( f(x) \) is odd or even, we will compute \( f(-x) \): \[ f(-x) = \sin^2(-x) \cos^2(-x) (\sin(-x) \cos(-x). \] Using the properties of sine and cosine: - \( \sin(-x) = -\sin x \) - \( \cos(-x) = \cos x \) Substituting these into \( f(-x) \): \[ f(-x) = \sin^2(-x) \cos^2(-x) (-\sin x)(\cos x) = \sin^2 x \cos^2 x (-\sin x \cos x) = -\sin^2 x \cos^2 x (\sin x \cos x) = -f(x). \] ### Step 3: Conclusion about the function Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 4: Use the property of odd functions in definite integrals The property of definite integrals states that the integral of an odd function over a symmetric interval about zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{if } f(x) \text{ is odd}. \] ### Step 5: Apply the property to our integral Thus, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx = 0. \] ### Final Answer \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (\sin x \cos x) \, dx = 0. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2)sin^(5)xcos^(4)xdx

int_(0)^(pi//2) sin^(2) x cos ^(2) x dx

Evaluate: int_(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx

Evaluate: int_(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx

int_(-pi/2)^(pi/2) sin x*cos^2 xdx

int_(-pi/2)^(pi/2) |sin x| dx

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

Evaluate: int_(-pi//2)^(pi//2)sin^2x\ dx

int_(0)^(pi//2) (dx)/(4sin^(2) x + 5 cos^(2)x)

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0