Home
Class 12
MATHS
Are the following matrices invertible ? ...

Are the following matrices invertible ?
(i) `|{:(2,-3),(1,4):}|`
(ii) `|{:(7,0),(3,1):}|`
(iii) `|{:(1,-2,-3),(1,-3,-4),(1,-4,-5):}|`
(iv) `|{:(2,3,-1),(0,1,4),(-5,0,-2):}|`
(v) `|{:(0,1,2),(1,2,3),(3,1,1):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given matrices are invertible, we need to calculate the determinant of each matrix. A matrix is invertible if its determinant is non-zero. ### Step-by-Step Solution: **(i)** For the matrix \( A_1 = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix} \): 1. Calculate the determinant: \[ \text{det}(A_1) = (2)(4) - (-3)(1) = 8 + 3 = 11 \] 2. Since \( \text{det}(A_1) = 11 \neq 0 \), the matrix is **invertible**. **(ii)** For the matrix \( A_2 = \begin{pmatrix} 7 & 0 \\ 3 & 1 \end{pmatrix} \): 1. Calculate the determinant: \[ \text{det}(A_2) = (7)(1) - (0)(3) = 7 - 0 = 7 \] 2. Since \( \text{det}(A_2) = 7 \neq 0 \), the matrix is **invertible**. **(iii)** For the matrix \( A_3 = \begin{pmatrix} 1 & -2 & -3 \\ 1 & -3 & -4 \\ 1 & -4 & -5 \end{pmatrix} \): 1. Calculate the determinant using cofactor expansion: \[ \text{det}(A_3) = 1 \cdot \text{det}\begin{pmatrix} -3 & -4 \\ -4 & -5 \end{pmatrix} - (-2) \cdot \text{det}\begin{pmatrix} 1 & -4 \\ 1 & -5 \end{pmatrix} + (-3) \cdot \text{det}\begin{pmatrix} 1 & -3 \\ 1 & -4 \end{pmatrix} \] 2. Calculate the 2x2 determinants: \[ \text{det}\begin{pmatrix} -3 & -4 \\ -4 & -5 \end{pmatrix} = (-3)(-5) - (-4)(-4) = 15 - 16 = -1 \] \[ \text{det}\begin{pmatrix} 1 & -4 \\ 1 & -5 \end{pmatrix} = (1)(-5) - (-4)(1) = -5 + 4 = -1 \] \[ \text{det}\begin{pmatrix} 1 & -3 \\ 1 & -4 \end{pmatrix} = (1)(-4) - (-3)(1) = -4 + 3 = -1 \] 3. Substitute back: \[ \text{det}(A_3) = 1(-1) + 2(-1) - 3(-1) = -1 - 2 + 3 = 0 \] 4. Since \( \text{det}(A_3) = 0 \), the matrix is **not invertible**. **(iv)** For the matrix \( A_4 = \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & 4 \\ -5 & 0 & -2 \end{pmatrix} \): 1. Calculate the determinant using cofactor expansion: \[ \text{det}(A_4) = 2 \cdot \text{det}\begin{pmatrix} 1 & 4 \\ 0 & -2 \end{pmatrix} - 3 \cdot \text{det}\begin{pmatrix} 0 & 4 \\ -5 & -2 \end{pmatrix} + (-1) \cdot \text{det}\begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix} \] 2. Calculate the 2x2 determinants: \[ \text{det}\begin{pmatrix} 1 & 4 \\ 0 & -2 \end{pmatrix} = (1)(-2) - (4)(0) = -2 \] \[ \text{det}\begin{pmatrix} 0 & 4 \\ -5 & -2 \end{pmatrix} = (0)(-2) - (4)(-5) = 20 \] \[ \text{det}\begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix} = (0)(0) - (1)(-5) = 5 \] 3. Substitute back: \[ \text{det}(A_4) = 2(-2) - 3(20) - 5 = -4 - 60 - 5 = -69 \] 4. Since \( \text{det}(A_4) = -69 \neq 0 \), the matrix is **invertible**. **(v)** For the matrix \( A_5 = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix} \): 1. Calculate the determinant using cofactor expansion: \[ \text{det}(A_5) = 0 \cdot \text{det}\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} - 1 \cdot \text{det}\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} + 2 \cdot \text{det}\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \] 2. Calculate the 2x2 determinants: \[ \text{det}\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} = (1)(1) - (3)(3) = 1 - 9 = -8 \] \[ \text{det}\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = (1)(1) - (2)(3) = 1 - 6 = -5 \] 3. Substitute back: \[ \text{det}(A_5) = 0 - (-1)(-8) + 2(-5) = 0 - 8 - 10 = -18 \] 4. Since \( \text{det}(A_5) = -18 \neq 0 \), the matrix is **invertible**. ### Summary of Results: - (i) Invertible - (ii) Invertible - (iii) Not Invertible - (iv) Invertible - (v) Invertible
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the following matrices if exist : (i) |{:(5,-3),(2,2):}| (ii) |{:(1,-3),(-1,2):}| (iii) |{:(1,0,-1),(3,4,5),(0,-6,-7):}| (iv) |{:(1,-3,3),(2,2,-4),(2,0,2):}| (v) |{:(1,2,1),(1,-1,-2),(1,2,-1):}| (vi) |{:(4,-2,-1),(1,1,-1),(-1,2,4):}|

Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (ii) |{:(3,-4,5),(1,1,-2),(2,3,1):}| (iii) |{:(0,1,2),(-1,0,-3),(-2,3,0):}| (iv) |{:(2,-1,-2),(0,2,-1),(3,-5,0):}|

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

Wherever possible write each of the following as a single matrix. (i) [{:(,1,2),(,3,4):}]+[{:(,-1,-2),(,1,-7):}] (ii) [{:(,2,3,4),(,5,6,7):}]-[{:(,0,2,3),(,6,-1,0):}] (iii) [{:(,0,1,2),(,4,6,7):}]+[{:(,3,4),(,6,8):}]

compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,a):}](ii) [{:(1),(2),(3):}][2" "3 " "4 ] (iii) [{:(1,-2),(2,3):}][{:(1,2,3),(2,3,1):}] (iv)[{:(2,3,4),(3,4,5),(4,5,6):}][{:(1,-3,5),(0,2,4),(3,0,5):}] (V) [{:(2,1),(3,2),(-1,1):}][{:(1,0,1),(-1,2,1):}] (vi) [{:(3,-1,3),(-1,0,2):}][{:(2,-3),(1,0),(3,1):}]

Evaluate : if possible (i) [3,2] [{:(,2),(,0):}] (ii) [1 , -2] [{:(,-2,3),(,-1,4):}] (iii) [{:(,6,4),(,3,-1):}] [{:(,-1),(,3):}] (iv) [{:(,6,4),(,3,-1):}] [{:(,-1),(,3):}]

Evaluate: (i) 3[(5),(-2)] (ii) 7 [{:(,-1,2),(,0,1):}] (iii) 2[{:(,-1, 0),(,2,-3):}] +[{:(,3,3),(,5,0):}]

Find the equations of the plane passing through the following points : (i) A(2,1,0), B(3,-2,-2), C(3,1,7) (ii) A(1,1,1), B(1,-1,2), C(-2,-2,2) (iii) A(0,-1,0), B(2,1,-1), C(1,1,1) (iv) A(1,-2,5), B(0,-5,-1), C(-3,5,0) (v) (4,-1,-1), B(2,0,2),C(3,-1,2)

Evaluate the determinants (i) |(3,-1,-2),( 0, 0,-1),( 3,-5, 0)| (ii) |(3,-4, 5), (1, 1,-2),( 2, 3, 1)| (iii) |(0, 1, 2),(-1, 0,-3),(-2, 3, 0)| (iv) |(2,-1,-2),( 0, 2,-1),( 3,-5, 0)|

Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,8):}] (ii) [{:(,x,0),(,-3,1):}] [{:(,1,1),(,0,y):}]=[{:(,2,2),(,-3,-2):}]