Home
Class 12
MATHS
x=a cos t, y=b sin t find dy/dx...

x=a cos t, y=b sin t find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) given the parametric equations \( x = a \cos t \) and \( y = b \sin t \), we can follow these steps: ### Step 1: Differentiate \( x \) with respect to \( t \) Given: \[ x = a \cos t \] Differentiating both sides with respect to \( t \): \[ \frac{dx}{dt} = -a \sin t \] This is our first equation. ### Step 2: Differentiate \( y \) with respect to \( t \) Given: \[ y = b \sin t \] Differentiating both sides with respect to \( t \): \[ \frac{dy}{dt} = b \cos t \] This is our second equation. ### Step 3: Use the chain rule to find \( \frac{dy}{dx} \) Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values from our previous steps: \[ \frac{dy}{dx} = \frac{b \cos t}{-a \sin t} \] ### Step 4: Simplify the expression We can simplify this expression: \[ \frac{dy}{dx} = -\frac{b}{a} \cdot \frac{\cos t}{\sin t} \] This can be rewritten using the tangent function: \[ \frac{dy}{dx} = -\frac{b}{a} \cdot \cot t \] Or, alternatively: \[ \frac{dy}{dx} = -\frac{a}{b} \tan t \] ### Final Answer Thus, the value of \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{a}{b} \tan t \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

x=2 cos^2 t, y= 6 sin ^2 t find dy/dx

If x=a sin t,y=b cos t, then (dy)/(dx)=

If cos (x+y)=y sin x then find dx/dy

x=a (t-sin t) , y =a (1-cos t) find dy/dx

If x=a (cos t + t sin t) and y=a ( sin t- t cos t), find (d^(2)y)/(dx^(2))

If x=2 and y=a t^2 ,then find dy/dx

If x = a ( t+ sin t) and y = a (1- cos t) " find " (dy)/(dx)

If x=a cos^3 t " and "y=a sin ^3 t "then find " dy/dx

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Find d y / d x

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4