Home
Class 12
MATHS
Prove that the determinant [xsinthetacos...

Prove that the determinant `[xsinthetacostheta-sintheta-x1costheta1x]`is independent of 0.

Text Solution

Verified by Experts

`[{:(x,"sin"theta,"cos"theta),("-sin"theta,-x,1),("cos"theta,1,x):}]`
`[{:(-x,1),(1,x):}]"-sin"theta[{:("-sin"theta,1),("cos"theta,x):}]"+cos"theta|{:("-sin"theta,-x),("cos"theta,1):}|`
`=x(-x^(2)-1)-"sin"theta(-x"sin"theta-"cos"theta)+"cos"theta(-"sin"theta"+x"cos"theta)`
`=-x^(3)-x+x"sin"^(2)theta+"sin"theta"cos"theta-"sin"theta"cos"theta+x"cos"^(2)theta`
`=-x^(3)-x+x(sin^(2)theta+cos^(2)theta)`
`=-x^(3)-x+x=-x^(3)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.6|16 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Prove that the determinant [(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)] is independent of theta .

Prove that the determinant |[x, sintheta,costheta],[-sintheta,-x,1],[costheta,1,x]| is independent of theta

Prove that the determinant |(x,sin theta,cos theta),(-sin theta,-x,1),(cos theta,1,x)| is independent of theta

Prove that the determinant Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}| is independent of theta .

If |[x,sintheta,costheta],[-sintheta,-x,1],[costheta,1,x]|=8 , write the value of xdot

Prove that (1-sintheta+costheta)^2=2(1+costheta)(1-sintheta)

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tantheta/2

Prove that (costheta-sintheta+1)/(costheta+sintheta-1)=c o s e ctheta+cottheta

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

Prove that : (1+sintheta)/(costheta)+(costheta)/(1+sintheta)=2sectheta