Home
Class 12
MATHS
f (x) = {{:((|x^(2)- x|)/(x^(2) - x),xne...

`f (x) = {{:((|x^(2)- x|)/(x^(2) - x),xne 0"," 1),(1",", x = 0),(-1",", x = 0 ):}` is continuose for all :

A

x

B

x except at x = 0

C

x except at x = 1

D

x except at = and x = 1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \[ f(x) = \begin{cases} \frac{|x^2 - x|}{x^2 - x}, & x \neq 0 \\ 1, & x = 0 \\ -1, & x = 1 \end{cases} \] we need to analyze the function at the points of interest, particularly at \(x = 0\) and \(x = 1\), and also check the intervals where \(x \neq 0\). ### Step 1: Analyze the function for \(x \neq 0\) For \(x \neq 0\), we can simplify \(f(x)\) based on the expression inside the modulus. The expression \(x^2 - x\) can be factored as: \[ x^2 - x = x(x - 1) \] This means that the sign of \(x^2 - x\) will change depending on the intervals of \(x\): - **When \(x < 0\)**: \(x^2 - x > 0\) (since both factors are negative) - **When \(0 < x < 1\)**: \(x^2 - x < 0\) (since \(x\) is positive and \(x - 1\) is negative) - **When \(x > 1\)**: \(x^2 - x > 0\) (since both factors are positive) Thus, we can rewrite \(f(x)\) as: \[ f(x) = \begin{cases} 1, & x < 0 \\ -1, & 0 < x < 1 \\ 1, & x > 1 \end{cases} \] ### Step 2: Check continuity at \(x = 0\) To check the continuity at \(x = 0\), we need to find the left-hand limit (LHL) and right-hand limit (RHL) as \(x\) approaches 0. - **Left-hand limit (LHL)** as \(x \to 0^{-}\): \[ \lim_{x \to 0^{-}} f(x) = 1 \] - **Right-hand limit (RHL)** as \(x \to 0^{+}\): \[ \lim_{x \to 0^{+}} f(x) = -1 \] Since LHL \(\neq\) RHL, the function is not continuous at \(x = 0\). ### Step 3: Check continuity at \(x = 1\) Next, we check the continuity at \(x = 1\). - **Left-hand limit (LHL)** as \(x \to 1^{-}\): \[ \lim_{x \to 1^{-}} f(x) = -1 \] - **Right-hand limit (RHL)** as \(x \to 1^{+}\): \[ \lim_{x \to 1^{+}} f(x) = 1 \] Again, since LHL \(\neq\) RHL, the function is not continuous at \(x = 1\). ### Step 4: Conclusion on continuity The function \(f(x)\) is continuous everywhere except at \(x = 0\) and \(x = 1\). Therefore, we conclude that: \[ f(x) \text{ is continuous for all } x \in \mathbb{R} \setminus \{0, 1\} \] ### Final Answer The function \(f(x)\) is continuous for all \(x\) except at \(x = 0\) and \(x = 1\). ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.1|34 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.2|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5o|20 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is continuous at x =1 then

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

If f(x) defined by f(x)={(|x^2-x|)/(x^2-x1,x=0),x!=0,1-1,x=1 then (A)f(x) is continuous for all x (B) for all x except at x=0 (C) for all x except at x=1 (D)for all x except at x=0 and x=1

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},(ninI). Then

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5p
  1. f (x) = {{:((|x^(2)- x|)/(x^(2) - x),xne 0"," 1),(1",", x = 0),(-1","...

    Text Solution

    |

  2. Let f(x) ={{:((x-4)/(|x-4|)+a,xlt4),(a+b,x=4),( (x-4)/(|x-4|)+b, x gt4...

    Text Solution

    |

  3. The points of discontinuity of the function f (x) = {{:(3x + 1"," ,...

    Text Solution

    |

  4. If f (x) = sin (x)/(x), x ne 0 then the value of the function at x = ...

    Text Solution

    |

  5. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  6. If (x) = |x| + |x - 1|, than :

    Text Solution

    |

  7. Given that f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),(...

    Text Solution

    |

  8. If f (x) {{:((1 - cos 8 x )/(x^(2)) "," x ge 0 ),(lambda ", ...

    Text Solution

    |

  9. The function f(x)={x} , where [x] denotes the greatest integer functio...

    Text Solution

    |

  10. If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find ...

    Text Solution

    |

  11. If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x) is differentiable on

    Text Solution

    |

  12. If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha...

    Text Solution

    |

  13. d/(dx)[log{e^x((x-2)/(x+2))^(3//4)}] equals (a) (x^2-1)/(x^2-4) (b...

    Text Solution

    |

  14. If x=acos^(3) theta, y=a sin^(3) theta, then ([1+((dy)/(dx))^(2)]^(3//...

    Text Solution

    |

  15. If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2)...

    Text Solution

    |

  16. The derivative of the function cot^(-1){(cos2x)^(1//2)} at x=pi//6 ...

    Text Solution

    |

  17. If y^(2) = ax^(2) + bx + c where a, b c are contants then y^(3)(d^(2...

    Text Solution

    |

  18. If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1...

    Text Solution

    |

  19. "If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y(2)+xy(1) is (where ...

    Text Solution

    |

  20. If y = sin ^(2) alpha + cos ^(2) (alpha + beta) + 2 sin alpha sin beta...

    Text Solution

    |