Home
Class 12
MATHS
int x/(x+a)dx...

`int x/(x+a)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x}{x+a} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand \( \frac{x}{x+a} \) as follows: \[ \frac{x}{x+a} = \frac{(x+a) - a}{x+a} = \frac{x+a}{x+a} - \frac{a}{x+a} = 1 - \frac{a}{x+a} \] Thus, we can express the integral as: \[ \int \frac{x}{x+a} \, dx = \int \left( 1 - \frac{a}{x+a} \right) \, dx \] ### Step 2: Separate the integral Now, we can separate the integral into two parts: \[ \int \left( 1 - \frac{a}{x+a} \right) \, dx = \int 1 \, dx - \int \frac{a}{x+a} \, dx \] ### Step 3: Integrate the first part The integral of 1 with respect to \( x \) is: \[ \int 1 \, dx = x \] ### Step 4: Integrate the second part For the second integral \( \int \frac{a}{x+a} \, dx \), we can factor out the constant \( a \): \[ \int \frac{a}{x+a} \, dx = a \int \frac{1}{x+a} \, dx \] The integral \( \int \frac{1}{x+a} \, dx \) is: \[ \int \frac{1}{x+a} \, dx = \ln |x+a| \] Thus, we have: \[ \int \frac{a}{x+a} \, dx = a \ln |x+a| \] ### Step 5: Combine the results Now, we can combine the results of the two integrals: \[ \int \frac{x}{x+a} \, dx = x - a \ln |x+a| + C \] where \( C \) is the constant of integration. ### Final Answer The final answer to the integral is: \[ \int \frac{x}{x+a} \, dx = x - a \ln |x+a| + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int x/(a+x) dx

Find the integral of following: int x(x+3)dx

int x. a^(x) dx

int x sqrt(x)dx=

int e^x(3+x) dx

int(4-x)/x .dx

int x.sin x dx

Evaluate int\x.(x-5)\dx

(iii) inte^x.x(x+2)dx

Evaluate int(x^3)/(x-2)dx