Home
Class 12
MATHS
int " x dx "...

`int " x dx "`

A

`(x^(2))/(2)+c`

B

`(x^(2))+c`

C

`x+c`

D

`(x^(1))/(2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \, dx \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Integral**: We start with the integral: \[ I = \int x \, dx \] 2. **Use the Power Rule for Integration**: The power rule for integration states that: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] where \( n \neq -1 \) and \( C \) is the integration constant. In our case, \( n = 1 \). 3. **Apply the Power Rule**: Substitute \( n = 1 \) into the power rule: \[ I = \frac{x^{1+1}}{1+1} + C = \frac{x^2}{2} + C \] 4. **Final Result**: Therefore, the integral evaluates to: \[ I = \frac{x^2}{2} + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int 2/x dx

int cos 3x dx

int sin 2x dx

int x.sin x dx

ज्ञात करें int log x dx

int cot^2 x dx

int cos^4 x dx

int cot^3 x dx

int cot^6 x dx

int " log"_(e) " x dx "